摘要(英) |
This research aims to enhance enterprise production efficiency by integrating the concepts of lean management and the theory of constraints. While lean management is widely applied in businesses, this study advocates for enhancing its effectiveness through the application of the theory of constraints. The theory of constraints focuses on identifying and eliminating constraints that impact effective output, and its successful application significantly increases production capacity. Conversely, successful implementation of lean management reduces manufacturing costs by eliminating waste in the production process.
Through in-depth analysis of the production processes at the case company, opportunities for improvement were identified. In the continuous improvement process, the study integrated methods from the theory of constraints and concepts from lean theory to form an improvement cycle. This cycle aims to eliminate waste in the production process, ensuring smooth flow and increased production efficiency. The goal of this approach is to enhance production efficiency, reduce lead times, and simultaneously improve the overall effective output. In the improvement process, the case company effectively leveraged the complementary advantages of lean management and the theory of constraints, resulting in significant improvements in effective output, adaptation to production variations, and workforce optimization.
In conclusion, the case study confirmed that the complementary application of the theory of constraints and lean management can achieve synergistic effects. The study proposes an integrated model, the "LEAN_TOC Improvement Framework," particularly suitable for the manufacturing industry. This model cleverly combines the improvement thinking of the theory of constraints with the core principles of lean production, quickly identifying potential problems in the process and making organizational operations more efficient. Through this integrated improvement framework, not only product quality and delivery speed were enhanced, but customer satisfaction was also improved, ultimately assisting businesses in maximizing profits. The introduction of this model provides a new and effective method for the manufacturing industry to comprehensively optimize business processes and enhance competitiveness. |
參考文獻 |
ㄧ、中文文獻
1. Goinfo!台灣股市資訊網(2023),股票代號/名稱查詢,股豐資訊有限公司,Retrieved August 29,2023,取自: https://goodinfo.tw/tw/StockBzPerformance.asp? STOCK_ID=1503&RPT_CAT=M%5FYEAR。
2. 大野義男、江瑞坤(2014),精實現場管理,台北市:中衛發展中心。
3. 大野耐一(2011),豐田生產方式,台北:中衛發展中心。
4. 台灣電力公司(2022),強化電網韌性建設計畫,台灣電力公司,Retrieved July 03 ,2023,取自:https://www.taipower.com.tw/upload/325/202210041822021270 8.pdf。
5. 工業技術研究院(2019),電力調度走向廠網分工,工業技術研究院,Retrieved August 07,2023,取自:https://www.itri.org.tw/ListStyle.aspx?DisplayStyle= 18_content&SiteID=1&MmmID=1036452026061075714&MGID=1034721005103464177。
6. 台灣電力公司(2019),台電供電系統簡介,台灣電力公司,Retrieved August 07 ,2023,取自: https://www.taipower.com.tw/tc/page.aspx?mid=211
7. 白滌清(譯)(2013),生產與作業管理,台北:台灣培生教育出版股份有限公司。(Lee J. Krajewski、Larry P. Ritzman、Manoj K. Malhotra, 2012)
8. 朱慧萍(2005),精實生產方式與限制理論整合模式之應用,中原大學工業工程學系碩士論文。
9. 李榮貴、張盛鴻(2005),TOC限制理論,台北:中國生產力中心。
10. 吳鴻輝、李榮貴(2007),限制趨導式現場排程與管理技術,台北:全華圖書。
11. 林中彪(2013),少量多樣的生產管理與營運策略-以工業電腦專業設計製造商為例,國立政治大學商學院經營管理碩士學程全球企業家組碩士論文。
12. 周姚君(譯)(2007),圖解豐田生產方式,台北:經濟新潮社。(豐田生產方式研究會,2012)
13. 許文治、曹嬿恆(譯)(2013),現場改善(第二版),台北:美商麥格羅希爾國際股份有限公司台灣分公司。(今井正名,2012)
14. 國家發展委員會(2022),臺灣2050淨零排放路徑及策略總說明,中華民國國家發展委員會,Retrieved July 03,2023 取自:https://www.ndc.gov.tw/Content_ List.aspx?n=DEE68AAD8B38BD76。
15. 黃木水(2006),整合衡量概念之 TOC 問題解決模式研究,中原大學工業工程學系碩士論文。
16. 彭偉傑(2020),應用TOC五聚焦步驟改善模座製造廠之準交率,國立交通大學管理學院工業工程與管理學程碩士論文。
17. 陳億璋(2022),運用精實管理於生產作業流程改善‐以 C 公司為例,國立高雄科技大學企業管理系碩士論文。
18. 齊若蘭(譯)(2006),目標,台北:天下文化出版社。(Eliyahu M. Goldratt & Jeff Cox ,1984)
19. 鍾漢清(譯)(2015),精實革命:消除浪費、創造獲利的有效方法(十周年紀念版),台北:經濟新潮社。(James P.Womark & Daniel T. Jones, 1997)
二、英文文獻
20. Brown, A. (2019). The Application of PEST Analysis in the Hospitality Industry. Journal of Hospitality and Tourism Management, 36(4), 245-261.
21. Bostan Rebeca Ioana (2018).TOC, Lean, Six Sigma Are Complementary?.The Open University,Retrieved September 09 2023, from https://core.ac.uk/display/201287535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1.
22. de Jesus Pacheco, D. A. (2015). TOC, lean and six sigma: The missing link to increase productivity?. African Journal of Business Management, 9(12), 513-520.
23. Dettmer, H. W. (1997). Goldratt’s theory of constraints. Milwaukee:ASQ Quality Press.
24. Fullerton, R. R., & McWatters, C. S. (2001). The production performance benefits from JIT implementation. Journal of operations management, 19(1), 81-96.
25. Kilpatrick, J. (2003). Lean principles. Utah Manufacturing Extension Partnership, 68(1), 1-5.
26. Khaparde, S. A. (2017). Transformer engineering: design, technology, and diagnostics. Boca Raton:CRC Press.
27. Liker, J. (2004). The Toyota Way: 14 management principles from the world’s greatest manufacture. New York: McGraw-Hill.
28. McMullen Jr, T. B. (1998). Introduction to the theory of constraints (TOC) management system. Boca Raton: CRC Press.
29. Nave, D. (2002). How to compare six sigma, lean and the theory of constraints. Quality progress, 35(3), 73-80.
30. Nelson, B., & Sproull, B. (2017). Focus and Leverage: The Critical Methodology for Theory of Constraints, Lean, and Six Sigma (TLS). Boca Raton:CRC Press.
31. Ohno, T. (2019). Toyota production system: beyond large-scale production. Productivity press.
32. Porter, M.E. (2008). The five competitive forces that shape strategy. Harvard Business Review, 86(1), 78-93.
33. The White House. (2022). BY THE NUMBERS: The Inflation Reduction Act.The White House,Retrieved July 03 2023, from https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/15/by-the-numbers-the-inflation-reduction-act/.
34. Weihrich, H. (1982). The TOWS Matrix-A Tool for Situational Analysis. Long
Range planning, 15(2), 54-66.
35. Yang, T., & Kuo, Y., & Su, C. T., & Hou, C. L.(2015). Lean production system design for fishing net manufacturing using lean principles and simulation optimization. Journal of Manufacturing Systems, 34, 66-73. |