參考文獻 |
[1] Akaike, H. "Maximum likelihood identification of Gaussian autoregressive
moving average models." Biometrika 60.2, 1973, 255-265.
[2] Asadi, R., A. C. Regan. "A spatio-temporal decomposition based deep neural
network for time series forecasting." Applied Soft Computing 87, 2020, 105963.
[3] Bai, J.Z. Kolter, V. Koltun. "An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling." arXiv preprint
arXiv:1803.01271, 2018.
[4] Cleveland, R. B., W. S. Cleveland, J. E. McRae, I. Terpenning. "STL: A seasonaltrend decomposition." J. off. Stat 6.1, 1990, 3-73.
[5] Fan, J., K. C. Yung, M. Pecht. "Physics-of-failure-based prognostics and health
management for high-power white light-emitting diode lighting." IEEE
Transactions on Device and Materials Reliability 11.3, 2011, 407-416.
[6] Galar, D., U. Kumar, Y. Fuqing. "RUL prediction using moving trajectories
between SVM hyper planes." 2012 Proceedings Annual Reliability and
Maintainability Symposium., 2012, 1-6.
[7] Guo, L., N. Li, F. Jia, Y. Lei, J. Lin. "A recurrent neural network based health
indicator for remaining useful life prediction of bearings." Neurocomputing 240,
2017, 98-109.
[8] He, K., X. Zhang, S. Ren, J. Sun. "Deep residual learning for image
recognition." Proceedings of The IEEE Conference on Computer Vision and
Pattern Recognition., 2016, 770-778.
[9] Hyndman, R. J., G. Athanasopoulos. Forecasting: Principles and Practice.
OTexts, 2018.
[10] Kacprzynski, G. J., A. Sarlashkar, M. J. Roemer, A. Hess, B. Hardman "Predicting
remaining life by fusing the physics of failure modeling with diagnostics.
" JOm 56, 2004, 29-35.
[11] Keshun, Y., Q. Guangqi, G. Yingkui. "A 3D attention-enhanced hybrid neural
network for turbofan engine remaining life prediction using CNN and Bi-LSTM
models." IEEE Sensors Journal, 2023.
[12] Kitaev, N., Ł. Kaiser, A. Levskaya. "Reformer: The efficient transformer." arXiv
preprint arXiv:2001.04451, 2020.
[13] Li, H., W. Zhao, Y. Zhang, E. Zio. "Remaining useful life prediction using multiscale deep convolutional neural network." Applied Soft Computing 89, 2020, 106-
113.
[14] Li, S., X. Jin, Y. Xuan, X. Zhou, W. Chen, Y. X. Wang, X. Yan. "Enhancing the
locality and breaking the memory bottleneck of transformer on time series
forecasting." Advances in Neural Information Processing Systems 32, 2019.
[15] Li, S., X. Jin, Y. Xuan, X. Zhou, W. Chen, Y. X. Wang, X. Yan. "Enhancing the
locality and breaking the memory bottleneck of transformer on time series
forecasting." Advances in Neural Information Processing Systems 32, 2019.
[16] Li, X., Q. Ding, J. Q. Sun. "Remaining useful life estimation in prognostics using
deep convolution neural networks." Reliability Engineering & System Safety 172,
2018, 1-11.
[17] Li, X., Y. Xu, N. Li, B. Yang, Y. Lei. "Remaining useful life prediction with partial
sensor malfunctions using deep adversarial networks." IEEE/CAA Journal of
Automatica Sinica 10.1, 2022, 121-134.
[18] Li, Y., S. Billington, C. Zhang, T. Kurfess, S. Danyluk, S. Liang. "Adaptive
prognostics for rolling element bearing condition." Mechanical Systems and
Signal Processing 13.1, 1999, 103-113.
[19] Lin, Y., I. Koprinska, M. Rana. "Temporal convolutional attention neural networks
for time series forecasting." 2021 International Joint Conference on Neural
Networks (IJCNN), 2021,1-8
[20] Liu, L., X. Song, Z. Zhou. "Aircraft engine remaining useful life estimation via a
double attention-based data-driven architecture." Reliability Engineering &
System Safety 221, 2022, 108330.
[21] Miao, J., X. Li, J. Ye. "Predicting research of mechanical gyroscope life based on
wavelet support vector." 2015 First International Conference on Reliability
Systems Engineering (ICRSE)., 2015.
[22] Mo, Y., Q. Wu, X. Li, B. Huang. "Remaining useful life estimation via
transformer encoder enhanced by a gated convolutional unit." Journal of
Intelligent Manufacturing 32.7, 2021, 1997-2006.
[23] Nieto, P. J. G., E. García-Gonzalo, F. S. Lasheras, F. J. de Cos Juez. "Hybrid
PSO–SVM-based method for forecasting of the remaining useful life for aircraft
engines and evaluation of its reliability." Reliability Engineering & System
Safety 138, 2015, 219-231.
[24] Oppenheimer, C.H., K. A. Loparo. "Physically based diagnosis and prognosis of
cracked rotor shafts." Component and Systems Diagnostics, Prognostics, and
Health Management II. Vol. 4733. SPIE, 2002, 122-132.
[25] Oreshkin, B. N., D. Carpov, N. Chapados, Y. Bengio. "N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting." arXiv preprint
arXiv:1905.10437, 2019.
[26] Papoulis, A. Random Variables and Stochastic Processes. McGraw Hill, 1965.
[27] Parzen, E. "An approach to time series analysis." The Annals of Mathematical
Statistics 32.4, 1961, 951-989.
[28] Peddinti, V., D. Povey, S. Khudanpur. "A time delay neural network architecture
for efficient modeling of long temporal contexts." Interspeech, 2015, 3214-3218.
[29] Qin, Y., D. Song, H. Chen, W. Cheng, G. Jiang, G. Cottrell. "A dual-stage
attention-based recurrent neural network for time series prediction." arXiv
preprint arXiv:1704.02971, 2017.
[30] Ramasso, E., A. Saxena. "Performance Benchmarking and Analysis of Prognostic
Methods for CMAPSS Datasets." International Journal of Prognostics and Health
Management 5.2, 2014, 1-15.
[31] Ruan, D., Y. Wu, J. Yan, C. Gühmann. "Fuzzy-membership-based framework for
task transfer learning between fault diagnosis and RUL prediction." IEEE
Transactions on Reliability 72.3, 2022, 989-1002.
[32] Sateesh Babu, G., P. Zhao, X. L. Li. "Deep convolutional neural network based
regression approach for estimation of remaining useful life." Database Systems
for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas,
TX, USA, April 16-19, 2016, Proceedings, Part I 21. Springer International
Publishing, 2016, 214-228.
[33] Saxena, A., K. Goebel, D. Simon, N. Eklund. "Damage propagation modeling for
aircraft engine run-to-failure simulation." 2008 international Conference on
Prognostics and Health Management., 2008, 1-9.
[34] Sen, R., H. F. Yu, I. S. Dhillon. "Think globally, act locally: A deep neural
network approach to high-dimensional time series forecasting." Advances in
Neural Information Processing Systems 32, 2019.
[35] Taylor, S. J., B. Letham. "Forecasting at scale." The American Statistician 72.1,
2018, 37-45.
[36] Tian, Z. "An artificial neural network method for remaining useful life prediction
of equipment subject to condition monitoring." Journal of Intelligent
Manufacturing 23, 2012, 227-237.
[37] Wang, D., K. L. Tsui, Q. Miao. "Prognostics and health management: A review of
vibration based bearing and gear health indicators." IEEE Access 6, 2017, 665-
676.
[38] Wu, H., J. Xu, J. Wang, M. Long. "Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting." Advances in Neural Information
Processing Systems 34, 2021, 22419-22430.
[39] Xu, X., Q. Wu, X. Li, B. Huang. "Dilated convolution neural network for remaining useful life prediction." Journal of Computing and Information Science
in Engineering 20.2, 2020, 021004.
[40] Yu, W., I. I. Y. Kim, C. Mechefske. "Remaining useful life estimation using a
bidirectional recurrent neural network based autoencoder scheme." Mechanical
Systems and Signal Processing 129, 2019, 764-780.
[41] Zhang, W., G. Peng, C. Li, Y. Chen, Z. Zhang. "A new deep learning model for
fault diagnosis with good anti-noise and domain adaptation ability on raw
vibration signals." Sensors 17.2, 2017, 425.
[42] Zhang, Y., R. Xiong, H. He, M. G. Pecht. "Long short-term memory recurrent
neural network for remaining useful life prediction of lithium-ion batteries." IEEE
Transactions on Vehicular Technology 67.7, 2018, 5695-5705.
[43] Zhao, R., R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao. "Deep learning and its
applications to machine health monitoring." Mechanical Systems and Signal
Processing 115, 2019, 213-237.
[44] Zhao, S., Y. Pang, J. Chen, J. Liu. "Prediction of remaining useful life of aircraft
engines based on Multi-head Attention and LSTM." 2022 IEEE 6th Information
Technology and Mechatronics Engineering Conference (ITOEC). Vol. 6., 2022,
1530-1534.
[45] Zheng, S., K. Ristovski, A. Farahat, C. Gupta. "Long short-term memory network
for remaining useful life estimation." 2017 IEEE International Conference on
Prognostics and Health Management (ICPHM)., 2017, 88-95
[46] Zhou, H., S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang. "Informer:
Beyond efficient transformer for long sequence time-series
forecasting." Proceedings of The AAAI Conference on Artificial Intelligence. Vol.
35. No. 12., 2021. |