參考文獻 |
Adams, G. R., Hicken, M., & Salehi, M. (1988). Socialization of the physical attractiveness stereotype: Parental expectations and verbal behaviors. International Journal of Psychology, 23(1-6), 137-149.
Akhbari M., 2022. “Integration of multi-mode resource-constrained project
scheduling under bonus-penalty policies with material ordering under quantity discount scheme for minimizing project cost.” Scientia Iranica E 29(1), 427-446.
Bagheri A., Zandieh M., 2011. “Bi-criteria flexible job-shop scheduling with sequence-dependent setup times - Variable neighborhood search approach.” Journal of Manufacturing Systems 30, 8-15.
Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling. Management science, 44(2), 262-275.
Baykasoglu, A., Özbakır, L. “Analyzing the effect of dispatching rules on the scheduling performance through grammar-based flexible scheduling system.” International Journal of Production Economics 124, 369–381 (2010).
Bierwirth C., Kuhpfah J., 2017. “Extended GRASP for the Job Shop Scheduling Problem with Total Weighted Tardiness Objective.”. European Journal of Operational Research 261, 1-23.
Blazewicz, J., & Finke, G. (1994). “Scheduling with resource management in manufacturing systems”. European Journal of Operational Research, 1-14.
Braun, S., Peus, C., Weisweiler, S., & Frey, D. (2013). Transformational leadership, job satisfaction, and team performance: A multilevel mediation model of trust. The leadership quarterly, 24(1), 270-283.
Carlier, J., & Pinson, É. (1989). “An algorithm for solving the job-shop problem”. Management science, 35(2), 164-176.
Chaudhry, I. A., Khan, A. A research survey: review of flexible job shop scheduling techniques.
Chaves, A. A., Lorena, L. A. N., Senne, E. L. F., & Resende, M. G. (2016). Hybrid method with CS and BRKGA applied to the minimization of tool switches problem. Computers & Operations Research, 67, 174-183.
Coello Coello, C. A., & Cortés, N. C. (2005). “A study on the Inverted Generational Distance (IGD) indicator.” IEEE Transactions on Evolutionary Computation, 9(1), 58-67.
Dauzère-Pérès S., Paulli J., 1997. “An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search.” Annals of Operations Research 70, 281-306.
Dorndorf, U., & Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers & Operations Research, 22(1), 25-40.
Eshelman, L. J., & Schaffer, J. D. (1993). “Real-Coded Genetic Algorithms and Interval-Schemata”, Foundations of Genetic Algorithms, 187-202.
Garcia-Leon A. A., Dauzere-Peres S., Mati Y., 2019. “An efficient Pareto approach for solving the multi-objective flexible job-shop scheduling problem with regular criteria”. Computers and operations research 108 , 187-200.
Ghiani, C. A., Ying, Z., de Vellis, J., & Gomez-Pinilla, F. (2007). “Exercise decreases myelin-associated glycoprotein expression in the spinal cord and positively modulates neuronal growth”. Glia, 966–975.
Goh, C. K., & Tan, K. C. (2009). “Non-dominance ratio for preference articulation in evolutionary multiobjective optimization.” IEEE Transactions on Evolutionary Computation, 13(2), 347-365.
González M. A., Vela C. R., Varela R., 2015. “Scatter search with path relinking for the flexible job shop scheduling problem.” European Journal of Operational Research 245(1), 35-45.
Graham R. L., Lawler E. L., Lenstra J. K., and Rinnoo Kan A. H. G., 1979. “Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey.” Annals of Discrete Mathematics 5, 287–326.
Jensen, M.T. “Generating robust and flexible job shop schedules using genetic algorithms.” IEEE Transactions on Evolutionary Computation 7, 275–288 (2003).
Jia, S., Hu, Z.-H. “Path-relinking tabu search for the multi-objective flexible job shop scheduling problem.” Computers & Operations Research 47, 11–26 (2014).
Kim, Y.K., Park, K., Ko, J. “A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling.” Computers & Operations Research 30, 1151–1171 (2003).
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182–197.
Knopp S., Dauzère-Pérès S., Yugma C., 2017. “A batch-oblivious approach for complex job-shop scheduling problems”. European Journal of Operational Research 263 (1), 50–61.
Kreipl, S. (2000). A large step random walk for minimizing total weighted tardiness in a job shop. Journal of Scheduling, 3(3), 125-138.
Kuo, Y.H., (2023). An extended batch-oblivious approach for flexible Job shop with batching and material consumption when minimizing the total weighted material consumed and makespan. Unpublished master’s thesis, National Central University, Taoyuan City.
Manne, A. S. (1960). On the job-shop scheduling problem. Operations research, 8(2), 219-223.
Mason, B. J., Goodman, A. M., Dixon, R. M., Hameed, M. H. A., Hulot, T., Wesnes, K., ... & Boyeson, M. G. (2002). A pharmacokinetic and pharmacodynamic drug interaction study of acamprosate and naltrexone. Neuropsychopharmacology, 27(4), 596-606.
Mati, B. M., Mutie, S., Gadain, H., Home, P., & Mtalo, F. (2008). Impacts of land‐use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania. Lakes & Reservoirs: Research & Management, 13(2), 169-177.
Mati Y., Dauzère-Pérès S., Lahlou C., 2011. “A general approach for optimizing regular criteria in the job-shop scheduling problem.” European Journal of Operational Research 212(1), 33-42.
Mecler, J., Subramaninan, A., & Vidal, T. (2021). “A simple and effective hybrid genetic search for the job sequencing and tool switching problem”. Computers and Operations Research.
Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., & Rose, O. (2011). A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. Journal of scheduling, 14, 583-599.
Moradi, E., Fatemi Ghomi, S.M.T., Zandieh, M. “Bi-objective optimization research on integrated fixed time interval preventive maintenance and production for scheduling flexible job-shop problem.” Expert Systems with Applications 38, 7169–7178 (2011).
Mousakhani M., 2013. “Sequence-dependent setup time flexible job shop scheduling problem to minimize total tardiness.” International Journal of Production Research 51.12, 3476-3487.
Murovec, B. (2015). Job-shop local-search move evaluation without direct consideration of the criterion’s value. European Journal of Operational Research, 241(2), 320-329.
Muth, J. F., & Thompson, G. L. (1963). Industrial Scheduling. Englewood Cliffs, N. J., Prentice Hall 1963.
Nowicki E., Smutnicki C., 1996. “A fast taboo search algorithm for the job shop problem.”, Management Science 42, 797–813.
Peter Brucker and Rainer Schlie. (1990) “Job-shop scheduling with multi-purpose machines”. Computing 45, 369–375.
Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck for the job shop scheduling problem. European Journal of Operational Research, 120(2), 297-310.
Pezzella, F., Morganti, G., Ciaschetti, G. “A genetic algorithm for the flexible job-shop scheduling problem.” Computers & Operations Research 35, 3202–3212 (2008).
Privault, C., & Finke, G. (1995). “Modelling a tool switching problem on a single NC-machine”. Journal of Intelligent Manufacturing, 87–94.
Quang-Vinh Dang & Thijs van Diessen & Tugce Martagan & Ivo Adan,(2021).“A matheuristic for parallel machine scheduling with tool replacements”,European Journal of Operational Research,Vol. 291.
Rabiee, M., Zandieh, M., Ramezani, P. “Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches.” International Journal of Production Research 50, 7327–7342 (2012).
Rahmati, S.H.A., Zandieh, M. “A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem.” International Journal of Advanced Manufacturing Technology 58, 1115–1129 (2011).
Rahmati, S.H.A., Zandieh, M., Yazdani, M. “Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem.” International Journal of Advanced Manufacturing Technology 64, 915–932 (2013).
Riquelme, J. C., Coello Coello, C. A., Montes Sánchez, G., & Mostaghim, S. (2015). “Interactive evolutionary multi-objective optimization based on Kriging models. ” Information Sciences 298, 139-155.
S. Elaoud, T. Loukil, J. Teghem. (2007), “The Pareto fitness genetic algorithm: Test function study”. European Journal of Operational Research, 1703-1719.
Shen L., Buscher U., 2012. “Solving the serial batching problem in job shop manufacturing systems”. European journal of operational research 221, 14-26.
Shen L., Dauzère-Pérès S., Neufeld J. S., 2017. “Solving the Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times.” European journal of operational research 265, 503-516.
Snyman, S. & Bekker, J., (2019). “Comparing the performance of different metaheuristics when solving a stochastic bi-objective job shop scheduling problem.” In Proceedings of the 2019 ORSSA Annual Conference.
Van Laarhoven PJM., 1988. “Theoretical and computational aspects of simulated annealing.” PhD thesis, Erasmus University Rotterdam.
Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). “A hybrid genetic algorithm for multidepot and periodic vehicle routing problems”. Operations Research, 60, 611–624.
Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). “A unified solution framework for multi-attribute vehicle routing problems.” European Journal of Operational Research, 234, 658–673.
Vilcot G., Billaut J. C., 2008. “A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem”. European journal of operational research 190, 389-411.
Wang, S., Yu, J. (2010). “An effective heuristic for flexible job-shop scheduling problem with maintenance activities”. Computers & Industrial Engineering, 436-447.
Wu, M. C., Lin, C. S., Lin, C. H., & Chen, C. F. (2017). “Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems”, Computers & Operations Research, 101-112.
Yazdani, M., Amiri, M., Zandieh, M. “Flexible job-shop scheduling with parallel variable neighborhood search algorithm.” Expert Systems with Applications 37, 678–687 (2010).
Zhai, W., Kelly, P., & Gong, W. B. (1996). “Genetic algorithms with noisy fitness”. Mathematical and Computer Modelling, 131-142.
Zhang, H., Gen, M. “Multistage-based genetic algorithm for flexible job-shop
scheduling problem.” Journal of Complexity International 11, 223–232 (2005).
Zhou, H., Cheung, W., & Leung, L. C. (2009). Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm. European Journal of Operational Research, 194(3), 637-649. |