摘要(英) |
In recent years, the issue of climate change has become increasingly severe, prompting countries worldwide to actively promote carbon reduction initiatives. Taiwan has also set a policy goal of fully electrifying passenger cars by 2040. This study aims to explore the environmental impact of electric vehicles (EVs) and their significance in reducing carbon emissions. To address the issue of insufficient charging infrastructure, we propose optimizing the deployment of mobile EV charging stations. Considering the challenges faced by fixed charging stations in urban areas with limited land resources, this study uses Taipei City as a case study and proposes a two-stage Mixed Integer Programming (MIP) model.
In the first stage, the MIP model selects the combination of candidate sites that maximizes the coverage score. In the second stage, the MIP model aims to minimize costs by selecting the optimal locations for storage stations. The research results indicate that out of the 104 screened sites, 20 candidate sites were selected in the first stage. None of these 20 sites are within 500 meters of each other, and there are 30 data points where the selected sites and unselected sites are within 500 meters, achieving the goal of maximizing the coverage score. In the second stage, the Pan America Dermatology Clinic was ultimately chosen as the storage station location, with a total cost of NT$105,305,512, including dispatch costs of NT$10,366,584 and electricity costs of NT$42,110,654.
Optimizing the deployment of mobile charging stations can significantly improve the coverage of charging infrastructure, providing a feasible and effective alternative, especially in urban areas with limited land resources. Considering the unique circumstances and needs of different regions, the proposed model is adaptable and scalable. By incorporating green energy generation, the model can also reduce carbon emissions and operational costs. Future research can further expand the application of the model by integrating the latest technological developments, such as 5G communication and the Internet of Things (IoT), to enhance the intelligence and automation of the system. This would contribute to a more sustainable and green transportation system, aiding global carbon reduction goals. |
參考文獻 |
中文文獻
[1]人車事新聞(2020)。固定式充電樁將成歷史?福斯集團發表移動式充電機器人概念。檢自https://www.carstuff.com.tw/car-news/item/33192-2020-12-30-04-28-26.html(上網日期:2024年1月2日)。
[2]內政部地政司(2024)。地籍圖資網路便民服務系統。檢自https://easymap.land.moi.gov.tw/W10Web/Normal(上網日期:2024年5月21日)。
[3]台灣就業通(2023)。電動車市場概況及未來趨勢。檢自https://job.taiwanjobs.gov.tw/internet/index/DocDetail.aspx?uk=2740&docid=40079(上網日期:2024年1月29日)。
[4]台灣電力公司(2024)。各類電價表及計算範例。
[5]全國法規資料庫(2010)。都市計畫法臺灣省施行細則。檢自https://law.moj.gov.tw/LawClass/LawOldVer.aspx?pcode=D0070012&lnndate=20100201&lser=001(上網日期:2024年5月21日)。
[6]交通部(2023)。臺灣2050淨零轉型「運具電動化及無碳化」關鍵戰略行動計畫(草案)。
[7]交通部公路局(2024)。交通部公路局統計查詢網。檢自https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=11100 (上網日期:2024年5月8日)
[8]交通部中央氣象局(2023)。農業氣象觀測網監測系統。檢自https://agr.cwa.gov.tw/NAGR/history/station_hour (上網日期:2024年5月12日)
[9]行政院(2023)。臺灣2050淨零排放。
[10]全達國際(2024)。E-HERO移動式充電機器人。檢自https://www.chander.com.tw/e-hero5.html(上網日期:2024年5月8日)。
[11]陳福來(2019)。電動車大未來:世紀初電動車簡史。ca汽車頻道。檢自https://channel-auto.com/2019/11/05/original-of-ev-cars/(上網日期:2024年1月15日)。
[12]郭家宏(2021)。電動車秘史:190 年前就已經上路,市占率還一度超過三成。今新聞。檢自https://esg.businesstoday.com.tw/article/category/180696/post/202109140047/(上網日期:2024年1月15日)。
[13]經濟部能源署(2023)。加油站經營實體統計。檢自https://www2.moeaea.gov.tw/oil111/Dealer/BusinessEntity(上網日期:2024年1月29日)。
[14]經濟部能源署(2024)。各縣市汽車加油站汽柴油銷售統計月資料。檢自https://www.moeaea.gov.tw/ECW/populace/content/wfrmStatistics.aspx?type=2&menu_id=1300 (上網日期:2024年5月8日)
[15]臺北市交通管制工程處(2023)。交通流量調查資料。檢自https://www.bote.gov.taipei/cp.aspx?n=E0C93DC334AE8028 (上網日期:2024年3月15日)。
[16]環境部氣候變遷署(2023)。氣候變遷因應法。
[17]環境部氣候變遷署(2024)。碳費收費辦法草案。
英文文獻
[18]Andrade, T., Kelman, R., Cunha, T. M., Albuquerque, L. R., & Calili, R. F. (2022). An integer programming model for the selection of pumped‐hydro storage projects. Water Resources Research, 58(1), e2020WR028625.
[19]Chen, C. F. (2006). Applying the analytical hierarchy process (AHP) approach to convention site selection. Journal of Travel Research, 45(2), 167-174.
[20]Chang, N. B., & Makkeasorn, A. (2010). Optimal site selection of watershed hydrological monitoring stations using remote sensing and grey integer programming. Environmental Modeling & Assessment, 15, 469-486.
[21]European Economic Area (2016). Electric Vehicles in Europe.
[22]Guo, S., & Zhao, H. (2015). Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Applied Energy, 158, 390-402.
[23]Hale, T. S., & Moberg, C. R. (2003). Location science research: A review. Annals of Operations Research, 123, 21-35.
[24]Hosseini, S., & Sarder, M. D. (2019). Development of a Bayesian network model for optimal site selection of electric vehicle charging station. International Journal of Electrical Power & Energy Systems, 105, 110-122.
[25]Intergovernmental Panel on Climate Change (2018). Global Warming of 1.5 ℃.
[26]Intergovernmental Panel on Climate Change (2023). AR6 Synthesis Report : Climate Change 2023.
[27]International Energy Agency (2023). Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach.
[28]Li, Z., Sahinoglu, Z., Tao, Z., & Teo, K. H. (2010). Electric vehicles network with nomadic portable charging stations. In 2010 IEEE 72nd Vehicular Technology Conference-Fall, 1-5.
[29]Li, J., Tang, Y., & Zhou, L. (2015). Electric Vehicle Charging Station Location Problem Research. Information and Communication Technology in Education, 2630-2637.
[30]Our World in Data (2023). Emissions by Sector: Where Do Greenhouse Gases Come From.
[31]Şahin, T., Ocak, S., & Top, M. (2019). Analytic hierarchy process for hospital site selection. Health Policy and Technology, 8(1), 42-50.
[32]Shariff, S. M., Alam, M. S., Ahmad, F., Rafat, Y., Asghar, M. S. J., & Khan, S. (2019). System design and realization of a solar-powered electric vehicle charging station. IEEE Systems Journal, 14(2), 2748-2758.
[33]United Nations (1992). United Nations Framework Convention on Climate Change.
[34]United Nations (1997). Kyoto Protocol.
[35]United Nations (2015). Paris Agreement.
[36]United National Environment Programme (2021). National Greenhouse Gases Inventory Report of the Islamic Republic of Afghanistan.
[37]United National Environment Programme (2023). Emissions Gap Report 2023.
[38]Weber, A., (1929). The Theory of the Location of Industries. Chicago:University of Chicago Press.
[39]Wang, B., Liang, Y., Zheng, T., Yuan, M., & Zhang, H. (2018). Multi-objective site selection optimization of the gas-gathering station using NSGA-II. Process Safety and Environmental Protection, 119, 350-359.
[40]Wu, Y., Yang, M., Zhang, H., Chen, K., & Wang, Y. (2016). Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method. Energies, 9(3), 157.
[41]The World Bank(2024). Launch of the 2024 State and Trends of Carbon Pricing Report.
[42]Ye, B., Jiang, J., Miao, L., Yang, P., Li, J., & Shen, B. (2015). Feasibility study of a solar-powered electric vehicle charging station model. Energies, 8(11), 13265-13283.
[43]Zhou, G., Zhu, Z., & Luo, S. (2022). Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm. Energy, 247, 123437. |