博碩士論文 111426029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:13.58.162.85
姓名 蔡耿欣(Keng-Hsin Tsai)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以螞蟻演算法最佳化具備時間窗考量之貨櫃電池運輸路徑
(Using Ant Colony Optimization to OptimizeTransport Routes for Battery Containers with Time Window Constraints)
相關論文
★ 以模擬退火演算法 進行化鍍製程無關聯平行機台之排程★ 以混合整數規劃 安插電鍍銅平行機台之緊急訂單
★ 以混合整數規劃進行非相關平行機台之批次製造排程★ 考量最大利潤之再生能源發電業最佳能源分配
★ 工業用電考量時間電價之太陽能發電系統最佳配置規劃★ 應用深度學習優化塗佈機之預測性維護
★ 應用資料探勘提升伺服器CPU熱流驗證效能★ 半導體設備商因應歐盟碳邊境調整機制之供應商遴選模式
★ 以混合整數規劃優化移動式充電樁存放位置★ 快遞轉運中心以風光互補發電提升電動車隊用電之綠能佔比
★ 製藥業連續製程可行性之外部環境評估★ 以基因演算法優化無人機送餐路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-20以後開放)
摘要(中) 全球暖化所帶來的影響不僅僅是溫度上升,更進一步影響地球生態環境,甚至造成物種滅絕等不可逆影響。因此,如何有效減少溫室氣體排放已成為一大重要議題。要減緩全球暖化,再生能源的使用是不可或缺的。而現今主要的再生能源包括太陽能、風力發電等,這些再生能源非常依賴天候因素,造成其能源提供的穩定性不佳。對於供給不穩定的能源,可以透過儲能的方式將其儲存起來,將離峰時期的過多的能源轉移至尖峰時期使用。在有需求時能及時運送至需求點,不僅能解決能源不足的問題,也同時能提高再生能源的使用率。綜上所述,本研究將針對如何將移動式電池運送至需求點進行相關研究,並以最大化所能滿足的電力需求為目標。而因應現實情況考量,在各電力需求點加上時間窗來限制其所能運送的時間,並針對運送載具的容量及運送距離也進行了限制。基於以上,透過網狀路徑圖來模擬現實情境設置需求點,且問題本身也屬於路徑構成之VRP問題,路徑長短也為考量之因素,所以採用調整型螞蟻演算法來進行求解。改良演算法參照了螞蟻演算法之基礎並進行對問題特性之改良。透過不同類型問題之實驗對演算法之可行性及參數組合進行調整,驗證改良演算法對問題求解的結果,並選擇出較佳之參數組合,實驗結果證明改良演算法可以有效對本研究問題之求解過程及結果有較好的目標值。
摘要(英) The impacts of global warming extend beyond the rise in temperatures, further affecting the Earth′s ecological environment and even causing irreversible effects such as species extinction. Therefore, effectively reducing greenhouse gas emissions has become a significant issue. To mitigate global warming, the use of renewable energy is indispensable. Currently, the main renewable energy sources include solar and wind power. These renewable energy sources are highly dependent on weather conditions, leading to instability in their energy supply. For the unstable energy supply, energy can be stored during off-peak periods and transferred to peak periods for use. This method allows energy to be delivered to demand points when needed, solving the problem of energy shortages and simultaneously increasing the utilization rate of renewable energy.
In summary, this study focuses on researching how to transport mobile batteries to demand points with the goal of maximizing the power demand that can be met. Considering real-world situations, time windows are added to each power demand point to restrict the delivery time, and limitations are also set on the capacity and delivery distance of the transport vehicles. Based on the above, a mesh path map is used to simulate the real-world setting of demand points. The problem itself belongs to the VRP (Vehicle Routing Problem) formed by paths, where the length of the paths is also a factor to consider. Therefore, an adaptive ant colony algorithm is used to solve the problem. The improved algorithm is based on the fundamental ant colony algorithm and is adjusted according to the characteristics of the problem. Through experiments on different types of problems, the feasibility and parameter combinations of the algorithm are adjusted, verifying that the improved algorithm provides better objective values in solving the problem of this study.
關鍵字(中) ★ 永續發展
★ 再生能源
★ 移動式貨櫃電池
★ 路徑規劃問題
★ 螞蟻演算法
關鍵字(英) ★ Sustainability
★ Renewable Energy
★ Mobile Battery Container
★ Vehicle Routing Problem
★ Ant Colony Optimization
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 研究問題 1
1.1 全球暖化與能源轉型(Global Warming and Energy Transition) 1
1.2 研究動機 5
1.3 問題描述 10
第二章 文獻探討 12
2.1 儲能技術 12
2.2 路徑規劃問題 13
2.3 啟發式演算法 15
第三章 研究方法 21
3.1 問題分析 21
3.2 模型與參數 24
3.3 研究方法 27
第四章 電腦實驗 36
4.1 參數設定及實驗方法 36
4.2 小問題參數實驗 38
4.3 中問題參數實驗 41
4.4 大問題實驗 44
4.5 研究貢獻 45
第五章 結論 46
5.1 研究總結 46
5.2 後續研究 48
參考文獻 49
參考文獻 參考文獻
中文文獻
1. 台達電子 (2020)。台達為金門夏興電廠設置儲能系統。
檢自https://www.deltaww.com/zh-TW/news/12798 (訪問於2023年12月20日)。
2. 台達電子 (2021)。台達與彰師大合作建置儲能系統。
檢自https://www.deltaww.com/zh-TW/news/delta-assists-changhua-normal-university-to-build-an-energy-storage-system-with-a-one-stop-solution (訪問於2023年12月20日)。
3. 奇裕集團(2022)。奇裕集團ESS儲能系統介紹。
檢自https://www.kromax.com/zh-TW/ProductDetails.aspx?id=3158 (訪問於2024年1月17日)。
4. 科技部 (2021)。IPCC 氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告。
5. 科技部 (2022)。IPCC 氣候變遷第六次評估報告「衝擊、調適與脆弱度」之科學重點摘錄與臺灣氣候變遷衝擊評析更新報告。
6. 國家發展委員會 (2022)。臺灣2050淨零排放路徑及策略總說明。
7. 盛齊綠能(2021)。儲能電池貨櫃系統圖。
檢自https://www.billionwatts.com.tw/battery-energy-storage-system-ESS (訪問於2023年12月20日)。
8. 楊宛蓉 (2020)。儲能於再生能源整合運用趨勢與機會。臺灣能源期刊,第七卷第四期,405-420。
9. 綠能科技產業推動中心(2021)。能源系統及技術介紹。
檢自https://www.geipc.tw/IndustryBranch.aspx?id=46 (訪問於2024年1月21日)
10. 餘勇(2021)。電池儲能系統集成技術與應用。機械工業出版社。

英文文獻
11. Agrawal, A. K., Yadav, S., Gupta, A. A.& Pandey, S. (2022). A genetic algorithm model for optimizing vehicle routing problems with perishable products under time-window and quality requirements. Decision Analytics Journal 5 (2022), 100139.
12. Baños, R., Ortega, J., Gil, C., Fernández, A. & Toro, F. D. (2013). A Simulated Annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications, 40(5), 1696-1707.
13. Chen J., Gui, P., Ding, T., Na, S. & Zhou, Y. (2019). Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search. Sustainability 2019, 11(23), 6584.
14. Chen, D. & Yang, Z. (2017). Multiple Depots Vehicle Routing Problem in the Context of Total Urban Traffic Equilibrium. Journal of Advanced Transportation, 2017
15. Clarke, G. & Wright, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research, 12(4), 568-581.
16. Dantzig, G. B. & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80-91.
17. Dorigo, M., Maniezzo, V. & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41.
18. European Union (2020). Fit for 55.
19. He, M., Wei, Z., Wu, X. & Peng, Y. (2021). An Adaptive Variable Neighborhood Search Ant Colony Algorithm for Vehicle Routing Problem with Soft Time Windows. IEEE Access, 9, 21258-21266
20. Intergovernmental Panel on Climate Change (2021). Sixth Assessment Report Climate Change 2021: The Physical Science Basis.
21. International Energy Agency (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector.
22. International Energy Agency (2023). World Energy Outlook 2023.
23. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220, 671-680, 1983.
24. Küçükoglu, I. & Öztürk, N. (2015). An advanced hybrid meta-heuristic algorithm for the vehicle routing problem with backhauls and time windows. Computers & Industrial Engineering 86 (2015) 60–68
25. Li, Y., Yang, W. & Huang, B. (2020). Impact of UAV Delivery on Sustainability and Costs under Traffic Restrictions. Mathematical Problems in Engineering, 2020.
26. Low-Carbon Power. https://lowcarbonpower.org/(Accessed: Dec. 7, 2023)
27. Sun, J., Jiang, T., Song, Y., Guo, H. & Zhang, Y. (2022). Research on the Optimization of Fresh Agricultural Products Trade Distribution Path Based on Genetic Algorithm. Agriculture 2022, 12(10), 1669.
28. United Nations (1992). United Nations Framework Convention on Climate Change.
29. United Nations (2015). Paris Agreement.
30. United Nations Framework Convention on Climate Change (2023). Technical dialogue of the first global stocktake.
31. Wan, M., Li, L., Xiao, J., Wang, C. & Yang, Y. (2011). Data clustering using bacterial foraging optimization. Journal of Intelligent Information Systems, 38, 321-341, 2012.
32. World Meteorological Organization (2023). State of the Climate in Asia 2022.
33. Wu, D. & Wu, C. (2022). Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows. Agriculture 2022, 12(6), 793.
指導教授 王啓泰(Chi-Tai Wang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明