博碩士論文 111456002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.144.251.225
姓名 陳詡衣(CHEN-XU-YI)  查詢紙本館藏   畢業系所 工業管理研究所在職專班
論文名稱 電子與機構料件的深度學習缺料預測模型及與MRP系統關係研究-以A公司為例
(Research on deep learning material shortage prediction models for electronic and mechanical components and their relationship with MRP system - An example using Company A.)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 電子製造業對於產品缺料與物料調整需求和交期,為產品出貨關鍵因素,然而在物料的預測與交期需要透過不間斷的追蹤料況,成為整個產品從研發、試量產到量產的過程中扮演重要的角色。因此,本研究深入探討了在電子製造業中預測缺料對產品出貨的關鍵影響。從產品規格確認到預測物料需求和確保交貨準時,預測與備料的過程需經由部門間協調和供應鏈追蹤,在整個產品生產過程中扮演關鍵角色。本研究聚焦於將類神經網絡(DNN)技術與物料需求計劃(MRP)系統結合,以預測缺料的重要性。透過研究缺料預測和備料的評估,使企業能夠應對生產挑戰,確保營運順利並準時發貨。此外,本研究強調數據收集、模型訓練和評估的關鍵性,並著重適當的參數初始化和學習策略設定。通過DNN模型,建立更準確的缺料預測模型,以因應未來供應鏈變化不確定性,同時確保高效的生產運作和交貨流程。

本研究將物料需求計劃(MRP)系統結合深度神經網絡(DNN)模型,以找出影響缺料預測的關鍵因素。透過研究物料需求預測與庫存管理之間的關聯,針對缺料預測和備料評估進行深入分析,揭示企業在確保營運順暢和準時交貨方面所面臨的挑戰。研究不僅強調了DNN模型自變數的重要性,還著重於正確的參數初始化和適當的學習策略設定。通過應用DNN模型建立準確的缺料預測模型,以應對未來供應鏈變化中的不確定性,同時確保高效的運營和準時交貨。

最終研究旨在實現即時且動態的庫存管理,以避免過剩或缺料所帶來的生產延遲和成本增加。通過不斷改進深度學習技術和模型性能,以期望提供更有效的改進措施和管理策略,來幫助企業應對市場需求的變化和內部供應鏈的調整。這將為供應鏈的整體效率和電子製造業提供更具策略性的方法,來應對不斷增長的複雜動態需求。
摘要(英) The electronics manufacturing industry considers product shortages, material adjustment needs, and delivery lead times as critical factors for product shipment. However, predicting materials and lead times requires inter-departmental tracking and tracing of materials, playing a crucial role throughout the entire product development, pilot production, and mass production process. Therefore, this study delves into the key impact of predicting material shortages on product shipments in the electronics manufacturing industry. From confirming product specifications to predicting material needs and ensuring on-time delivery, the forecasting and stocking process requires coordination between departments and supply chain tracking, playing a vital role in the entire product manufacturing process. This research focuses on integrating neural network (DNN) technology with Material Requirements Planning (MRP) systems to emphasize the importance of predicting shortages. By studying the interactive relationship between shortage prediction and material assessment, businesses can address production challenges, ensuring smooth operations and timely deliveries. Furthermore, the research highlights the criticality of data collection, model training, and evaluation, with an emphasis on appropriate parameter initialization and learning strategy setting. Through DNN technology, the study aims to establish more accurate shortage prediction models to adapt to the uncertainties of future supply chain changes while ensuring efficient production operations and delivery processes.

The research emphasizes the crucial roles of Material Requirements Planning (MRP) systems and models based on DNN technology. It explores the relationship between predictive material requirements and inventory management, with a specific focus on predicting shortages and evaluating material replenishment. The study reveals the challenges that enterprises encounter in ensuring smooth operations and timely deliveries. It highlights the significance of data and emphasizes the importance of correct parameter initialization and appropriate learning strategies. Through the application of DNN technology, the research aims to develop more accurate shortage prediction models to address the uncertainty of future supply chain changes and ensure efficient operations and on-time deliveries.

The ultimate goal of the study is to achieve real-time and dynamic inventory management, avoiding production delays and cost increases caused by excess or shortages. By continuously improving deep learning technology and model performance, the research aims to provide more effective improvement measures and management strategies to help businesses adapt to market demand changes and internal supply chain adjustments. This will have a positive impact on overall supply chain efficiency and business competitiveness, offering the electronics manufacturing industry more strategic approaches to address the increasingly complex dynamic demands.
關鍵字(中) ★ 深度學習
★ 神經網路
關鍵字(英) ★ Deep learning
★ Neural Network
論文目次 摘要 ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1-1研究背景與動機 1
1-2研究目的 2
1-3研究流程 4
第二章 相關文獻探討 5
2-1缺料與備料管理指標 5
2-1-1缺料管理指標 5
2-1-2備料管理指標 6
2-2資料探勘與深度學習 8
2-3類神經網路 11
2-3-2深度學習流程圖 14
2-4 MRP系統管理 16
2-4-1 MRP系統起源 16
2-4-2 MRP系統主要步驟 17
第三章 研究方法 19
3-1 研究架構 19
3-2 模型設計 26
3-2-1單一類神經網路 26
3-2-2-1隱藏層(Hidden layer)計算以三層隱藏層為例 28
3-3 深度神經網絡(DNN)模型均方誤差(MSE)損失函數 30
3-4隱藏層與Loss值計算步驟和邏輯 31
3-5最佳模型與缺料決策 32
第四章 個案研究 33
4-1 個案公司背景說明 33
4-2 資料蒐集與準備 34
4-3 實驗設計 35
4-3-1資料及分割 35
4-3-2自變數相關性評估 37
4-3-3輸入變數組合與參數訓練設計 40
4-4 最佳缺料模型 44
4-5 DNN和MRP模型關係分析 46
第五章 結論 48
參考文獻 50
附錄一 51
參考文獻 [1]: Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. (2008) Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies. (3rd ed.), McGraw-Hill Irwin, Boston.
[2]: Christopher, M. (2016) Logistics and Supply Chain Management. (5th ed.), Pearson, London.
[3]: Chopra, S., & Meindl, P. (2016). Supply Chain Management: Strategy, Planning, and Operation (6th ed.). Pearson.
[4]: Slack, N., Chambers, S., & Johnston, R. (2010). Operations and Process Management: Principles and Practice for Strategic Impact. Pearson Education.
[5]:許振邦,中華採購與供應管理協會: «採購與供應管理», 元照出版,民國110年。
[6]: Wild, T. (2017). Best Practice in Inventory Management (3rd ed.). Abingdon, United Kingdom: Routledge.
[7]: Tan , P.-N. , Steinbach , M. , and Kumar , V. ( 2016 ). Introduction to data mining. New Delhi : Pearson Education India .
[8]: LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
[9]: Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117
[10]: Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. MIT Press.
[11]: Krizhevsky A., & Hinton, G.E.(2011).Using very deep autoencoders for content-based image retrieval. In ESANN.
[12]: Nielsen, M.A. (2015) Neural Networks and Deep Learning. Determination Press.
[13]: Kingma, Diederik and Ba, Jimmy (2015). Adam: A Method for Stochastic Optimization, In International Conference on Learning Representations (ICLR).
[14] : Monostori, L. (2003)AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Eng. Appl. Artif. Intell., 16, 277–291.
指導教授 葉英傑(Yeh, Ying-Chieh) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明