參考文獻 |
中文文獻
1. 工業技術研究院 https://coating.itri.org.tw/technology/hardware/3-hardware.html(查閱日期:2023年12月25日)。
2. 朱文彬,2019。「先進塗佈製程與設計開創高價值產品」。工業材料雜誌, 386期,059。
3. 谷歌機器學習教育課程 https://developers.google.com/machine-learning/gan/gan_structure?hl=zh-tw(查閱日期:2024年03月05日)。
4. 洪哲倫、張志宏、林宛儒,2019。「工業4.0與智慧製造的關鍵技術:工業物聯網與人工智慧」。科儀新知,221,pp.19-25。
5. 財團法人資訊工業策進會https://www.iii.org.tw/Focus/FocusDtl.aspx?f_type=2&f_sqno=PE5ep%2BXYvQHJatEOb13lBg__&fm_sqno=13(查閱日期:2023年12月15日)。
6. 溫恕恒,2011。「到處可見的塗佈工程」。工業材料雜誌,299期,055。
7. 顧問公司OOSGA https://zh.oosga.com/docs/industry-40/(查閱日期:2023年11月11日)。
英文文獻
8. Alsyouf, I., 2009, “Maintenance practices in Swedish industries: Survey result.” International Journal of Production Economics, Vol. 121, pp. 221-223.
9. Araszkiewicz, K., 2017, “Digital Technologies in Facility Management-The state of Practice and Research Challenges.” Procedia Engineering, Vol. 196, pp. 1034-1042.
10. Bhat, D., Muench, S., & Roellig, M., 2023, “Application of machine learning algorithms in prognostics and health monitoring of electronic systems: A review e-Prime - Advances in Electrical Engineering.” Electronics and Energy, Vol. 4, Article 100166.
11. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., & Zdeborová, L., 2019, “Machine learning and the physical sciences.” Reviews of Modern Physics, Vol. 91 (4), Article 045002.
12. Chung, E., Park, K., & Kang, P., 2023, “Fault classification and timing prediction
based on shipment inspection data and maintenance reports for semiconductor manufacturing equipment.” Computers & Industrial Engineering, Vol. 176, Article 108972.
13. Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B., 2020, “Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0.” Sustainability, Vol. 12 (19), Article 8211.
14. Deng, C., Yin, X., Zou, J., Wang, M., & Hou, Y., 2024, “Assessment of the impact of climate change on streamflow of Ganjiang River catchment via LSTM-based models.” Journal of Hydrology: Regional Studies, Vol. 52, Article 101716.
15. Goodfellow, I., Bengio, Y., & Courville, A., 2016, “Deep learning.” MIT Press.
16. Hardt, F., Kotyrba, M., Volna, E., & Jarusek, R., 2021, “Innovative Approach to Preventive Maintenance of Production Equipment Based on a Modified TPM Methodology for Industry 4.0.” Applied Sciences, Vol. 11 (15), Article 6953.
17. Heinrich, K., Zschech, P., Janiesch, C., & Bonin, M., 2021, “Process data properties matter: Introducing gated convolutional neural networks (GCNN) and key-value-predict attention networks (KVP) for next event prediction with deep learning.” Decision Support Systems, Vol. 143, Article 113494.
18. Hochreiter, S., & Schmidhuber, J., 1997, “Long Short-Term Memory.” Neural Computation, Vol. 9 (8), pp. 1735-1780.
19. Hurtado, J., Salvati, D., Semola, R., Bosio, M., & Lomonaco, V., 2023, “Continual learning for predictive maintenance: Overview and challenges.” Intelligent Systems with Applications, Vol. 19, Article 200251.
20. Janiesch, C., Zschech, P., & Heinrich, K., 2021, “Machine learning and deep learning.” Electronic Markets, Vol. 31 (3), pp. 685-695.
21. Jezzini, A., Ayache, M., Elkhansa, L., Makki, B., & Zein, M., 2013, “Effects of predictive maintenance (PdM), Proactive maintenance (PoM) & Preventive maintenance (PM) on minimizing the faults in medical instruments.” 2013 2nd International Conference on Advances in Biomedical Engineering, pp. 53-56.
22. Jiang, C., Chen, Y., Chen, S., Yuming, B., Li, W., Tian, W., & Guo, J., 2019, “A Mixed Deep Recurrent Neural Network for MEMS Gyroscope Noise Suppressing.” Electronics, Vol. 8 (2), Article 181.
23. Kadry, S., 2012, “Diagnostics and prognostics of engineering systems: methods and techniques: methods and techniques.” IGI Global.
24. Krohling, B., & Krohling, R., 2023, “1D Convolutional neural networks and machine learning algorithms for spectral data classification with a case study for Covid-19.” ArXiv, abs/2301.10746.
25. Kumar, P., Khalid, S., & Kim, H. S., 2023, “Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications - A Review.” Mathematics, Vol. 11 (13), Article 3008.
26. Lee, D., Choo, H., & Jeong, J., 2023, “Anomaly Detection based on 1D-CNN-LSTM Auto-Encoder for Bearing Data.” WSEAS Transactions on Information Science and Applications, Vol. 20, pp. 1-6.
27. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D., 2018, “Machine Learning in Agriculture: A Review.” Sensors, Vol. 18 (8), Article 2674.
28. Malhotra, P., Vishnu, T. R., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. M., 2016, “Multi-Sensor Prognostics using an Unsupervised Health Index based on LSTM Encoder-Decoder.” arXiv preprint arXiv:1608.06154.
29. McKinsey Digital., 2015, “Industry 4.0: How to navigate digitization of the manufacturing sector.”
30. Mobley, R. K., 2002, “An introduction to predictive maintenance.” Elsevier.
31. Navamani, T. M., 2019, “Efficient Deep Learning Approaches for Health Informatics.” In Deep learning and parallel computing environment for bioengineering systems, pp. 123-137, Academic Press.
32. Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M., 2021, “Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management.” International Journal of Information Management, Vol. 57, Article 102282.
33. Praveena, M., & Jaiganesh, V., 2017, “A Literature Review on Supervised Machine Learning Algorithms and Boosting Process.” International Journal of Computer Applications, Vol. 169 (8), pp. 32-35.
34. Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R., 2019, “A survey of predictive maintenance: Systems, purposes and approaches.” arXiv preprint arXiv:1912.07383.
35. Raouf, I., Khan, A., Khalid, S., Sohail, M., Azad, M. M., & Kim, H. S., 2022, “Sensor-Based Prognostic Health Management of Advanced Driver Assistance System for Autonomous Vehicles: A Recent Survey.” Mathematics, Vol. 10 (18), Article 3233.
36. Rasamoelina, A. D., Adjailia, F., & Sinčák, P., 2020, “A Review of Activation Function for Artificial Neural Network.” 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 281-286. IEEE.
37. Russell, S., & Norvig, P., 2016, “Artificial Intelligence: A modern approach (3rd Edition).” Pearson.
38. Samuel, A. L., 1959, “Some Studies in Machine Learning Using the Game of Checkers.” IBM Journal of Research and Development, Vol. 3 (3), pp. 210-229.
39. Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P., 2017, “Stock price prediction using LSTM, RNN and CNN-sliding window model.” 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1643-1647. IEEE.
40. Sharma, S., Sharma, S., & Athaiya, A., 2017, “Activation functions in neural networks.” Towards Data Sci, Vol. 6 (12), pp. 310-316.
41. Shinde, P. P., & Shah, S., 2018, “A Review of Machine Learning and Deep Learning Applications.” 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1-6. IEEE.
42. Son, L. H., Tripathy, H. K., Acharya, B. R., Kumar, R., & Chatterjee, J. M., 2018, “Machine Learning on Big Data: A Developmental Approach on Societal Applications.” Big Data Processing Using Spark in Cloud, pp. 143-165.
43. Swanson, L., 2001, “Linking maintenance strategies to performance.” International Journal of Production Economics, Vol. 70 (3), pp. 237-244.
44. Vogl, G. W., Weiss, B. A., & Helu, M., 2019, “A review of diagnostic and prognostic capabilities and best practices for manufacturing.” Journal of intelligent manufacturing, Vol. 30, pp. 79-95.
45. Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V., 2017, “A manufacturing big data solution for active preventive maintenance.” IEEE Transactions on Industrial Informatics, Vol. 13 (4), pp. 2039-2047.
46. Wang, W., He, Q., Cui, Y., & Li, Z., 2018, “Joint Prediction of Remaining Useful Life and Failure Type of Train Wheelsets: Multitask Learning Approach.” Journal of Transportation Engineering Part A: Systems, Vol. 144.
47. Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L., 2021, “Industry 4.0 and Industry 5.0 - Inception, Conception and Perception.” Journal of Manufacturing Systems, Vol. 61, pp. 530-535.
48. Yoshimatsu, O., Satou, Y., & Shibasaki, K., 2018, “Rolling bearing diagnosis based on CNN-LSTM and various condition dataset.” In Annual conference of the PHM society, Vol. 10 (1).
49. Yue, G., Ping, G., & Lanxin, L., 2018, “An End-to-End model based on CNN-LSTM for Industrial Fault Diagnosis and Prognosis.” 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), pp. 22-24. IEEE.
50. Zhang, L., Wang, S., & Liu, B., 2018, “Deep learning for sentiment analysis: A survey.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 8 (4), e1253.
51. Zhang, W., Peng, G., Li, C., Chen, Y., & Zhang, Z., 2017, “A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals.” Sensors, Vol. 17 (2), Article 425.
52. Zhao, R., Wang, J., Yan, R., & Mao, K., 2016, “Machine health monitoring with LSTM networks.” 2016 10th International Conference on Sensing Technology (ICST), pp. 1-6. IEEE. |