博碩士論文 89541013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.141.47.163
姓名 李永瑤(Yun-Yao Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 有限行程下的線性致動器參數估測與快速定位控制之穩定性研究
(Identification of Linear Actuators within Limited Stroke and Stability Analysis on Fast-Pointing Systems)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究致動器在不同負載下的動態行為。首先推導致動器外接不同負載時的運動方程式,本文發展出獨特的模組式架構,將負載與致動器分離,使致動器在外接不同負載時完全不需要修改致動器本身的運動方程式,而以負載抗力作為致動器與負載之間的連結。所得到的運動方程式簡潔,極易轉換成系統或模擬所需的方塊圖,但最大的好處為,致動器或負載本身所含的非線性可個別鑑別,不需面對複雜而有行程限制的致動器與負載系統。
繼而提出致動器在無外加負載下的鑑別程序。本文提出一種新的鑑別方式,可在有限行程中鑑別致動器的阻尼、庫倫摩擦,以及系統轉動慣量等三大參數,其中轉動慣量的鑑別特別考慮到庫倫摩擦影響,並提出模擬與實驗結果,證實本方法的有效與正確性。
在建立制動器之參數鑑別後,繼續討論致動器與負載連結時,系統整體機械效率(hm)的鑑別方式。本文將與外力成正比的摩擦以機械效率來建模,詳細推導hm對系統運動方程式的影響,並提出hm 與致動器內部庫倫摩擦的鑑別方式。並提出實驗結果與理論模型比較,理論分析的正確性。
另外針對線性致動器中常見的非線性元素,特別是摩擦引起的死域(dead zone)非線性以及任意的非線性增益(nonlinear gain),再提出一種補償方式。本文利用非線性增益調整(nonlinear gain compensation)方式,針對非線性的特性曲線,設計一前置補償器,先行調整依照線性模型設計的控制器產生的控制量,此調整過的控
制量經功率放大器放大後驅動致動器,雖同樣受致動器非線性影響而減損部分訊號強度,但因已經事先做過適當放大補償,致動器實際輸出結果會如線性模型所預期。
最後以一個針對線性致動器精密定位系統的三階段非線性PPR (Proportional,Pulse, Ramp)控制器的穩定性提出證明。此PPR 控制器於2004 年提出,以簡單的控制法則,克服致動器的摩擦、背隙、死域等非線性,快速達成精度1 μm 的定位控制。此控制器性能雖優異,但其穩定性證明尚未於期刊中正式提出。本文除以Lyapunov 方法證明PPR 的穩定性之外,並深入分析斜坡控制的穩定性。
摘要(英) In this Dissertation, studies on actuators connected to various types of load are investigated, particularly on the topics of modeling, identification, compensation, controller design, and stability analysis. First we present a systematic approach to construct the equations of motion for various load types driven by a linear actuator. In this approach, the equations of motion for the actuator and the load are separated which enables the reader to derive the equations of motion of various types of load without being coupled with those of the linear actuator.
Next, we present a novel method for estimating the parameters of electro-mechanical systems, or known as actuators, within limited stroke. A sequence of pulses with various levels is designed to estimate the viscous damping coefficient and the Coulomb friction torque within the limited stroke of the actuator. Then an optimal algorithm based on the interior-reflective Newton method is applied to search the moment of inertia of the overall system.
We also examine the effect of mechanical efficiency on the performance of the actuator. In our research, we derive the equations of motion involving the mechanical efficiency hm and describe the procedure to estimate this important parameter of the actuator when connected to various types of load. To the best of the authors’knowledge, this topic has not been published in current research.
As regards the compensation for nonlinear elements inherent in the linear actuator,a novel approach to linearize such nonlinearities is proposed. This approach solves the inverse of the nonlinearity without requiring its I/O relations as a one-on-one map, which is necessary for the current inverse-model method.
Finally, we investigate the stability of a newly proposed ultra precise fasting pointing controller. This research investigates the sufficient stability condition of a
three-phase (proportional gain, pulse, and ramp, PPR) controller for pointing systems under the influence of friction. With the ramp and pulse schemes integrated, the PPR controller has been demonstrated to be an effective control strategy for fast and precise pointing applications. The Lyapunov direct method is applied to prove the stability of the PPR controller.
關鍵字(中) ★ 運動方程式
★ 非線性
★ 摩擦
★ 可動噴嘴
★ 倒單擺
★ 致動器
★ 系統鑑別
關鍵字(英) ★ friction
★ nonlinear systems
★ pointing control
★ stick-slip
★ simulation
★ modeling
★ identification
論文目次 Contents
摘要 i
Abstract ii
List of Figures vii
List of Tables x
List of Symbols xi
Chapter 1. Introduction 1
1.1. Background and Motivation 1
1.2. Objectives of This Dissertation 2
1.3. Organization of This Dissertation 2
1.4. Contribution of Studies in This Dissertation 4
Chapter 2. Modeling of Actuators with Various Load Types 5
2.1. Introduction 5
2.2. Schematic Diagram of the Linear Actuator 5
2.3. Equations of Motion for the Linear Actuator 6
2.3.1. Definition of the Gear Reduction Ratio 6
2.3.2. Equations from Motor to Ball Screw 8
2.3.3. Equations from Load to Motor 10
2.4. Reactance FL from Various Load Types 11
2.4.1. Rigid Linear Load 1: Spring 11
2.4.2. Rigid Linear Load 2: Ball-Screw-Driven Table 13
2.4.3. Rigid Rotational Load 1: Nozzle 14
2.4.4. Rigid Rotational Load 2: Gear Rotor 18
2.4.5. Rigid Rotational Load 3: Fork Rotor 19
2.4.6. Nozzle with Flexible Bolt Connection 24
2.4.7. Nozzle with Flexible Vertical Structure 26
2.5. Conclusions for This Chapter 33
Chapter 3. Identification of Actuators within Limited Stroke 34
3.1. Introduction 34
3.2. System Model and Experimental Setup 36
3.3. Procedure for Identifying Dmeq and Tf 37
3.4. Identifying Jmeq by ARX Model 41
3.5. Identifying Jmeq by Optimal Searching Algorithm 43
3.6. Simulation and Experimental Results 44
3.6.1. Friction Model for Simulation 44
3.6.2. Velocity Estimating Method 45
3.6.3. Simulation in Ideal Case 47
3.6.4. Simulation with Quantization Error 50
3.6.5. Simulation with Quantization Error and Random Noise 52
3.6.6. Experimental Evaluations 55
3.7. Conclusions of This Chapter 60
Chapter 4. Evaluation of Mechanical Efficiency of Actuators 62
4.1. Introduction 62
4.2. Friction and Mechanical Efficiency 62
4.2.1. Reactance FL and ηm 63
4.2.2. Internal Coulomb Friction and ηm 66
4.3. Equations of Motion Including ηm 70
4.4. Equations of Motion Including ηm and Fc 72
4.5. Equations of Motion for Servo Motors 73
4.6. Evaluation of ηm 74
4.6.1. Procedure for Evaluating ηm 75
4.6.2. Experiments for Evaluating ηm 78
4.7. Conclusions of This Chapter 80
Chapter 5. Compensation and Control for Dither Smoothed Nonlinearities 81
5.1. Introduction 81
5.2. The Dither-Smoothing Technology 82
5.3. The Proposed β-Compensation Algorithm 87
5.4. Numerical Examples 91
5.4.1. Arbitrary Gain Assignment 91
5.4.2. A Nonlinear Unstable System 94
5.5. Experimental Evaluations 98
5.6. Conclusions of This Chapter 102
Chapter 6. Ramp-Controlled Ultra Precise Pointing System 103
6.1. Introduction 103
6.2. Properties of Friction and Presliding 104
6.2.1. Some Explored Properties of Friction 104
6.2.2. Presliding Displacement of Static Friction 105
6.3. The PPR Controller 106
6.3.1. Principle of the PPR Controller 106
6.3.2. Region 0: Proportional Control 108
6.3.3. Region I: Pulse Control 109
6.3.4. Region II: Ramp Control 111
6.3.5. Design of Region III: the Target Region 115
6.3.6. PPR vs. PID, PI, and P Controllers 116
6.4. Stability Proof 118
6.4.1. Region 0: Proportional Control 118
6.4.2. Region I: Pulse Control 119
6.4.3. Region II: Ramp Control 121
6.4.4. Region III: the Target Region 123
6.5. Conclusions of This Chapter 123
Chapter 7. Discussions and Further Research 124
References 127
List of Publications 131
Journal Published in 2006-2009 131
參考文獻 References
[1]. H.-B. Yun, F. Tasbighoo, S. F. Masri, J. P. Caffrey, R. W. Wolfe, N. Makris, and C. Black, 2008, "Comparison of Modeling Approaches for Full-scale Nonlinear Viscous Dampers, " Journal of Vibration and Control, Vol. 14: pp. 51-76
[2]. F. F. Yap, H. Harmoko, M. Liu and N. Vahdati, Nov. 2007, "Modeling of hard disk drives for shock and vibration analysis – consideration of nonlinearities and discontinuities, " Nonlinear Dynamics, Volume 50, Number 3 , pp. 717-731.
[3]. R. Vilela Mendes and Luis V?zquez, Mar. 2007, "The dynamical nature of a backlash system with and without fluid friction, " Nonlinear Dynamics, Volume 47, Number 4, pp. 363-366
[4]. Hubert Hahn and Martin Neumann, Jun. 2005, "Mathematical Modeling, Control, Computer Simulation and Laboratory Experiments of a Spatial Servopneumatic Parallel Robot-Part I: Mathematical Models, Controllers, and Computer Simulations, " Nonlinear Dynamics, Volume 40, Number 4, pp. 387-417.
[5]. Hubert Hahn and Martin Neumann, Aug. 2006, "Mathematical Modeling, Control, Computer Simulation and Laboratory Experiments of a Spatial Servopneumatic Parallel Robot-Part II: Robot Construction and Laboratory Experiments, Controllers, and Computer Simulations, " Nonlinear Dynamics, Volume 45, Number 3-4, pp. 207-226.
[6]. C. Canudas de Wit, H. Olsson, K. ?str?m and P. Lischinsky, 1995, "A New Model for Control of Systems with Friction, " IEEE Transactions on Automatic Control, Vol. 40, No. 3, pp. 419-425.
[7]. J. Swevers, F. Al-Bender, C. G. Ganseman and T. Prajogo, 2000, "An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Friction Compensation, " IEEE Transactions on Automatic Control, Vol. 45, No. 4, pp. 675-686.
[8]. N. Barabanov, and R. Ortega, 2000, "Necessary and Sufficient Conditions for Passivity of the LuGre Friction Model, " IEEE Trans. on Automatic Control, Vol. 45, No. 4, pp. 830-832.
[9]. V. Lampaert, J. Swevers, and F. Al-Bender, 2002, "Modification of the Leuven Integrated Friction Model Structure, " IEEE Trans. on Automatic Control, Vol. 47, No. 4, pp. 683-687.
[10]. P. Dupont, V. Hayward, B. Armstrong and F. Altpeter, 2002, "Single State Elastoplastic Friction Models, " IEEE Trans. on Automatic Control, Vol. 47, No. 5, pp. 787-792.
[11]. G. Ferretti, G. Magnani and P. Rocco, 2004, "Single and Multistate Integral Friction Models, " IEEE Trans. on Automatic Control, Vol. 49, No. 12, pp. 2292-2297.
[12]. B. Armstrong-H?louvry, P. Dupont and C. Canduas de Wit, 1994, "A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction, " Automatica, Vol. 30, No. 7, pp. 1083-1138.
[13]. R. Kelly, J. Llamas and R. Campa, 2000, "A Measurement Procedure for Viscous and Coulomb Friction, " IEEE Trans. on Instrumentation and Measurement, Vol. 49, No. 4, pp. 857-861.
[14]. C. Canudas de Wit, K. J. Astrom and K. Braun, 1987, "Adaptive Friction Compensation in DC-Motor Drives, " IEEE J. of Robotics and Automation, RA-3, No. 6, pp. 681-685.
[15]. S. J. Kim, S. Y. Kim and I. J. Ha, 2004, "An Efficient Identification Method for Friction in Single-DOF Motion Control System, " IEEE Trans. on Control Systems and Technology, Vol. 12, No. 4, pp. 555-563.
[16]. B. Friedland and Y.-J. Park, 1992, "On Adaptive Friction Compensation, " IEEE Trans. on Automatic Control, Vol. 37, No. 10, pp. 1609-1612.
[17]. R.-H. Wu and P.-C. Tung, 2002, "Studies of Stick-Slip Friction, Presliding Displacement and Hunting, " ASME J. of Dynamic Systems, Measurement and Control, Vol. 124, pp. 111-117.
[18]. R.-H. Wu and P.-C. Tung, 2004, "Fast Pointing Control for Systems with Stick-Slip Friction, " ASME J. of Dynamic Systems, Measurement and Control, Vol. 126, pp. 614-626.
[19]. F. Janabi-Sharifi, V. Hayward and C.-S. J. Chen, 2000, "Discrete-Time Adaptive Windowing for Velocity Estimation, " IEEE Trans. on Control Systems and Technology, Vol. 8, No. 6, pp. 1003-1009.
[20]. T. F. Coleman and Y. Li, 1996, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds, " SIAM Journal on Optimization, Vol. 6, pp. 418-445.
[21]. T. F. Coleman, and Y. Li, 1994, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds, " Mathematical Programming, Vol. 67, Number 2, pp. 189-224.
[22]. B. Armstrong-H?louvry, 1993, "Control of Machines with Friction. Norwell, " MA: Kluwer.
[23]. T. Ohmae, T. Matsuda and K. Kamiyama, Aug. 1982, "A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives, " IEEE Trans. on Industrial Electronics, Vol. IE-29, pp. 207-211.
[24]. L. Rabiner, M. Sambur and C. Schmidt, 1975, "Applications of a nonlinear smoothing algorithm to speech processing, " IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, pp. 552–557.
[25]. P.-C. Tung and S. C. Cheng, 1993, "Experimental and Analytical Studies of the Sinusoidal Dither Signal in a DC Motor System, " Dynamics and Control, Vol. 3, pp. 53-69.
[26]. G. Tao and P. V. Kovotović, 1996, "Adaptive Control of Systems with Actuator and Sensor Nonlinearities. "John Wiley & Sons, INC.
[27]. G. Tao and P. V. Kovotović, 1994, "Adaptive control of plants with unknown dead-zone, " IEEE Trans. On Automatic Control, Vol. 39, No. 1, pp. 59-68.
[28]. R. R. Šelmić and F. L. Lewis, 2000, "Dead-zone compensation in motion control systems using neural networks, " IEEE Trans. On Automatic Control, Vol. 45, No. 4, pp. 602-613.
[29]. J.-H. Kim, J.-H. Park, S.-W. Lee and E. K. P. Chong, Apr. 1994, "A two-layered fuzzy logic controller for systems with dead-zones, " IEEE Trans. Industrial Electronics, Vol. 41, pp. 115-162.
[30]. G. Tao and P. V. Kovotović, Feb. 1995, "Adaptive control of plants with unknown output backlash, " IEEE Trans. On Automatic Control, Vol. 40, pp. 326-330.
[31]. J. Campos, F. L. Lewis and R. Selmic, 2000, "Backlash compensation in discrete time nonlinear systems using dynamic inversion by neural networks, " IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1289-1295.
[32]. A. Alexandrovitz and J. Rootenberg, April 1968, "Dither as a factor in hysteresis elimination in rotating amplifiers, " IEEE Trans. On Automatic Control, Vol. 13, pp. 170-173.
[33]. P. Dupont, V. Hayward, B. Armstrong and F. Altpeter, 2002, "Single state elastoplastic friction models, " IEEE Transactions on Automatic Control, Vol. 47, No. 5, pp. 787-792.
[34]. R. Oldenbruger and C. C. Liu, 1959, "Signal Stabilization of a Control System, " Trans. AIEE, Vol. 78, pp. 96-100.
[35]. R. C. Boyer, 1960, "Sinusoidal Signal Stabilization, "M. S. Thesis, Purdue Univ., Lafayette, Ind..
[36]. H. K. Khalil, 1996, Nonlinear Systems. Second edition, Prentice Hall, pp. 493-509.
[37]. R. Reichert and R. Nichols, "Gain scheduling for Hinfinity controllers: a flight control example, "IEEE Transactions on Control systems technology, Vol. 1, No. 2, 1993.
[38]. D. Stilwell and H. Rugh, "Stability preserving interpolation methods for the synthesis of gain-scheduled controllers, "Automatica, vol.36, pp.665-671, 2000.
[39]. J. Shamma, 1996. Linearization and Gain scheduling. In W. Levine (Ed.), Control handbook (pp. 388–396). Boca Raton: CRC Press.
[40]. J. Shamma and M. Athans, 1991. "Guaranteed properties of gain scheduled control for linear parameter varying plants. " Automatica, 27, 559–564.
[41]. P. R. Dahl, 1977, "Measurement of Solid Friction Parameters of Ball Bearings, " Proc. of 6th Annual Symp. On Incremental Motion, Control Systems and Devices, University of Illinois, ILO.
[42]. P. I. Ro, and P. I. Hubbel, 1993, "Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion, " ASME J. of Dynamic Systems, Measurement and Control, Vol. 115, pp. 103-108.
[43]. S. J. Huang, J. Y. Yen and S. S. Lu, 1999, "Dual Mode control of a System with Friction, " IEEE Trans. on Control Systems Technology, Vol. 7, No. 3, pp. 306-314.
[44]. K. Makihara, H. Ecker, and F. Dohnal, 2005, "Stability Analysis of Open-loop Stiffness Control to Suppress Self-excited Vibrations, " Journal of Vibration and Control, May, 2005, Vol. 11, pp. 643-669.
[45]. Y. Al-Sweiti and D. S?ffker, 2007, "Modeling and Control of an Elastic Ship-mounted Crane Using Variable Gain Model-based Controller, " Journal of Vibration and Control, Vol. 13, pp. 657-685.
[46]. N. Yagiz and Y. Hacioglu, 2005, "Fuzzy Sliding Modes with Moving Surface for the Robust Control of a Planar Robot, " Journal of Vibration and Control, Jul, 2005, Vol. 11, pp. 903-922.
[47]. N. Sadati and A. Talasaz, Nov. 2006, "Variable Structure Control with Adaptive Fuzzy Sliding Surface, " Journal of Vibration and Control, Vol. 12, pp. 1251-1270.
[48]. S. C. Southward, C. J. Radcliffe and C. R. MacCluer, 1991, "Robust Nonlinear Stick-Slip Friction Compensation," ASME J. of Dynamic Systems, Measurement and Control, Vol. 113, pp. 639-645.
[49]. M. R. Popovic, D. M. Gorinevsky and A. A. Goldenberg, 1995, "Fuzzy Logic Controller for Accurate Pointing of Direct-Drive Mechanism Using Force Pulses, " IEEE International Conference on Robotics and Automation, pp. 1166-1171.
[50]. S. Yang and M. Tomizuka, 1988, "Adaptive Pulse Width Control for Precise Pointing Under the Influence of Stiction and Coulomb Friction, " ASME J. of Dynamic Systems, Measurement and Control, Vol. 110, pp. 221-227.
[51]. D. B. Rathbun, M. C. Berg and K. W. Buffinton, 2000, "Pulse Width Control for Precise Positioning of Structurally Flexible Systems Subject to Stiction and Coulomb Friction, " ASME J. of Dynamic Systems, Measurement and Control, Vol. 126, pp. 131-138.
[52]. M. S. Branicky, "Stability of switched and hybrid systems: State of the art, " Proc. IEEE Conf. Decision and Control, pp. 1208-1212, 1997.
[53]. M. S. Branicky. "Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, " IEEE Trans. Automat. Control, 43(4):475–482, 1998.
End of this Dissertation.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2009-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明