博碩士論文 111426017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.128.170.203
姓名 葉彥輝(Yen-Hui Yeh)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類Locusbots系統於分區揀貨倉庫之兩種揀貨機器人作業流程的比較研究
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,資訊科技的迅速發展和行動網絡的普及使得電子商務成為市場主流,這也帶來了「少量、多樣化」的市場需求趨勢。這樣的轉變不僅增加了物流中心的作業難度,尤其在揀貨作業方面更為明顯。根據De Koster et al.(2007)的研究顯示,物流中心目前仍然以勞力為主,揀貨作業成本相當高昂,佔總成本的50%以上。為因應這樣的市場環境,引入自動化設備並合理規劃揀貨策略成為提升物流中心成本、產能和效率的重要關鍵。
類Locusbots系統的優勢在於其可靈活增減揀貨機器人的特性,有效應對訂單淡旺季的挑戰。該系統採用動態路徑規劃,即時更新揀貨環境狀態,巧妙避開各種障礙物,並計劃最優的揀貨路徑。此外,在類Locusbots系統中,揀貨員不需在倉庫中四處移動,只需待在指定揀貨區域,由揀貨機器人運送訂單和揀貨箱,使揀貨員能夠專注進行揀貨作業。這不僅能降低人力成本,同時提高揀貨作業的效率和準確性。
基於上述理由,本研究聚焦於類Locusbots系統中的揀貨策略,將一物流揀貨倉庫區分為多個揀貨區塊(Block)數相同的揀貨區域(Zone),對「Robot的揀貨區域(Zone)選擇問題」與「Robot的揀貨區塊(Block)選擇問題」分別數個法則,並提出兩種同時考慮了上述兩個問題的不同揀貨流程,期望透過本研究的模擬與分析,找出最佳的揀貨策略組合以及揀貨流程。
摘要(英) In recent years, the rapid development of information technology and the proliferation of mobile networks have made e-commerce the mainstream market. This has also brought about a trend of "small quantities, diverse varieties" in market demand. Such a shift not only increases the operational difficulty of logistics centers, but it is particularly evident in the picking operations. According to the research by De Koster et al. (2007), logistics centers are still predominantly labor-intensive, and the cost of picking operations is quite high, accounting for more than 50% of the total cost. To cope with this market environment, introducing automated equipment and reasonably planning picking strategies have become key factors in improving the cost, capacity, and efficiency of logistics centers.

The advantage of systems like LocusBots lies in their ability to flexibly increase or decrease the number of picking robots, effectively meeting the challenges of order fluctuations during peak and off-peak seasons. This system adopts dynamic path planning, which updates the picking environment status in real-time, skillfully avoids various obstacles, and plans the optimal picking path. Moreover, in a LocusBots-like system, pickers do not need to move around the warehouse; they only need to stay in designated picking zones. The picking robots transport orders and picking bins, allowing pickers to focus solely on the picking operations. This not only reduces labor costs but also improves the efficiency and accuracy of picking operations.

Based on the above reasons, this study focuses on the picking strategies in systems like LocusBots. It divides a logistics picking warehouse into several picking blocks (Blocks) and an equal number of picking zones (Zones). The study formulates several rules for the "Robot’s Zone Selection Problem" and the "Robot’s Block Selection Problem," and proposes two different picking processes that consider both of these issues simultaneously. Through simulation and analysis, this research aims to identify the optimal combination of picking strategies and processes.
關鍵字(中) ★ 物流中心
★ Locusbots系統
★ 揀貨機器人
★ 訂單選取法則
★ Robot的Zone選取法則
★ Robot的Block選取法則
關鍵字(英) ★ Logistics center
★ Locusbots system
★ Picking robots
★ Order selection rules
★ Robot′s zone selection rules
★ Robot′s block selection rules
論文目次 目錄
摘要 i
目錄 ii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 3
1.4研究環境 4
1.5論文架構 6
第二章 文獻探討 9
2.1 Locusbots 系統(Locusbots System) 10
2.1.1 Locusbots系統環境與作業流程 12
2.1.2 Locusbots設備介紹 13
2.2 物流(Logistics) 17
2.2.1 物流的定義(Logistics definition) 17
2.2.2 物流中心介紹(Distribution centre introduction) 18
2.3 倉儲規劃(Warehouse planning) 20
2.3.1 倉儲設計(Warehouse design) 20
2.3.2 走道設計(Aisle design) 21
2.4 揀貨作業規劃(Picking operation planning) 23
2.4.1 揀貨方法(Picking method) 23
2.4.2 揀貨政策(Picking policy) 24
2.4.3揀貨路徑策略(Picking routing strategy) 27
2.4.4揀貨作業績效評估指標(Picking operation performance evaluation indicator) 30
2.5 Robot 派車法則(Robot dispatching rule) 30
2.5.1 單屬性派車法則(Single attribute dispatching rule) 31
2.5.2 多屬性派車法則(Multiple attribute dispatching rule) 33
第三章 研究方法 34
3.1 Locusbots作業流程介紹 34
3.2 Locusbots作業流程之符號及變數定義 36
3.3 Locusbots系統各揀貨作業流程說明 37
3.3.1 揀貨機器人(Picking Robot)的揀貨作業流程 38
3.3.1.1類Locusbots系統的揀貨機器人之揀貨作業流程Type-I 38
3.3.1.2類Locusbots系統的揀貨機器人之揀貨作業流程圖Type-II 41
3.3.2 揀貨人員(Picker)的揀貨作業流程 44
3.4各研究問題之方法整理 46
3.5研究環境說明 51
3.6訂單選取問題 52
3.6.1隨機選取法 52
3.7 Robot的Zone選取法則(決定Robot該前往哪一個Zone) 53
3.7.1隨機選取法 53
3.7.2最短旅行距離法 53
3.7.3有最多待揀品項數的Zone優先法 55
3.7.4有最少待揀品項數的Zone優先法 56
3.7.5有最多待拜訪Block的Zone優先法 57
3.7.6有最少待拜訪Block的Zone優先法 58
3.8 Robot的Block選取法則(決定Robot該前往哪一個Block) 59
3.8.1隨機選擇法 59
3.8.2最短旅行距離法 59
3.8.3有最多待揀品項數的Block優先法 61
3.8.4有最少待揀品項數的Block優先法 62
3.8.5有最多正在揀貨Robot的Block優先法 63
3.8.6有最少正在揀貨Robot的Block優先法 64
3.9 揀貨人員的Block選取問題 65
3.9.1隨機選擇法 65
3.10揀貨人員Robot的選取問題(揀貨人員優先處理哪一台Robot) 65
3.10.1隨機選擇法 66
第四章 模擬實驗與分析 67
4.1 模擬實驗設計 67
4.1.1 揀貨環境設定 67
4.1.2 實驗訂單設定 68
4.1.3 揀貨環境假設 69
4.1.4 績效評估指標 70
4.2 統計分析 71
4.2.1 分析說明 73
4.2.2 依「揀貨系統總執行時間(TST)」為績效評估指標 73
4.2.3 依「訂單在系統內總時間(TTIS)」為績效評估指標 88
4.3 實驗結論 103
第五章 研究結論與建議 105
5.1 研究結論 105
5.2 未來研究建議 107
參考文獻 109
中文文獻 109
英文文獻 112
參考文獻 1. 王孔政、褚志鵬,2007,「供應鏈管理」,華泰文化,台北,初版。
2. 江偉銘,2011,「具途程彈性之分區揀貨系統的揀貨作業探討」,國立中央大學工業管理研究所,碩士論文。
3. 李天傑,2009,「零散揀貨環境下之分區揀貨作業問題的探討」,國立中央大學工業管理研究所,碩士論文。
4. 李宗儒,2019,「計劃性生產型態下彈性製造系統生產排程擬定方法之研究」,國立交通大學工業工程研究所,碩士論文。
5. 周士俊,2000,「塔布搜尋法在物流中心人工揀貨區揀貨問題之研究」,元智大學工業工程研究所,碩士論文。
6. 林育立,2011,「順序式分區揀貨之合作揀貨方法探討」,國立中央大學工業管理研究所,碩士論文。
7. 林家慈,2022,「類 Locusbots 系統之揀貨派車問題研究」,國立中央大學工業管理研究所,碩士論文。
8. 洪麗珠、馮正民,2003, 第三方物流中心績效指標之建立與應用 (Doctoral dissertation)。
9. 張福榮,2005,「物流管理」,五南,台北,二版。
10. 張兆中,2011,「利用途程彈性於順序式分區揀貨之改善」,國立中央大學工業管理研究所,碩士論文。
11. 張有恆,1998,「物流管理」,華泰文化,台北,初版。
12. 張軒銘,2018,「TFT-LCD廠之自動化搬運系統的多屬性派送控制方法」,國立中央大學工業管理研究所,碩士論文。
13. 張凱崴,2022,「類 Locusbots 系統之揀貨區域 Robot 選取問題研究」,國立中央大學工業管理研究所,碩士論文。
14. 張智陽,2008,「模擬導入RFID應用於物流倉儲作業流程之研究」,逢甲大學交通工程與管理學系碩士班,碩士論文。
15. 許晏誠,2008,「協力式揀貨機器人系統之派車問題探討」,國立中央大學工業管理研究所,碩士論文。
16. 郭俊威,2012,「聚不同功能I/O點之分區揀貨倉庫的揀貨路徑發展與比較」,國立中央大學工業管理研究所碩士,碩士論文。
17. 陳暉江,2004,「具兩條以上橫向走道之物流中心揀貨路徑規劃研究」,國立中央大學工業管理研究所,碩士論文。
18. 陳慧娟,1994,「物流中心生產力評估指標100」,經濟部發行;機械工業雜誌總經銷,台北,初版。
19. 黃靖華,2017,「類Kiva系統之「Kiva分配於Pod」與「Pod停放位置分配」問題之探討」,國立中央大學工業管理研究所,碩士論文。
20. 楊壁寧,2015,「越庫作業之多排理貨區播種式揀貨相關問題探討」,國立中央大學工業管理研究所,碩士論文。
21. 經濟部商業司,1996,「物流經營管理實務」,經濟部商業司,台北。
22. 董福慶、陳明德,1995,「物流中心揀貨作業」,經濟部發行;機械工業雜誌總經銷,台北,出版。
23. 賴順良,2019,「物流中心之訂單選取與揀貨路徑規劃的研究」,國立中央大學工業管理研究所,碩士論文。
24. 簡四華,2004,「在封閉式系統下多載量Robot之運送派車法則的研究」,國立中央大學工業管理研究所,碩士論文。
25. 顏憶茹、張淳智,2001,「物流管理:原理、方法與實例」,前程企管,新北市,三版。















英文文獻
1. Accorsi, R., Manzini, R., & Maranesi, F. (2014). A decision-support system for the design and management of warehousing systems. Computers in Industry, 65(1), 175-186.
2. Ai-Lan, F., Zhi, J., & Ji-Li, K. (2018, May). The comparative study of order pick location distribution characteristics impacting on the picking path in the distribution center. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 1090-1094). IEEE.
3. Baker, P., & Canessa, M. (2009). Warehouse design: A structured approach. European journal of operational research, 193(2), 425-436.
4. Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2019). Design of diagonal cross-aisle warehouses with class-based storage assignment strategy. The International Journal of Advanced Manufacturing Technology, 100(9), 2521-2536.
5. Bolanos Zuniga, J., Saucedo Martinez, J. A., Salais Fierro, T. E., & Marmolejo Saucedo, J. A. (2020). Optimization of the storage location assignment and the picker-routing problem by using mathematical programming. Applied Sciences, 10(2), 534.
6. Boysen, N., de Koster, R., & Füßler, D. (2021). The forgotten sons: Warehousing systems for brick-and-mortar retail chains. European Journal of Operational Research, 288(2), 361-381.
7. Cheng, T. C. E. (1987). A simulation study of automated guided vehicle dispatching. Robotics and Computer-Integrated Manufacturing, 3(3), 335-338.
8. Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. International Journal of Production Economics, 159, 158-167.
9. Chen, F., Wang, H., Xie, Y., & Qi, C. (2016). An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse. Journal of Intelligent Manufacturing, 27(2), 389-408.
10. Cano, J. A., Gomez, R. A., & Salazar, F. (2017). Routing policies in multi-parallel warehouses: an analysis of computing times. Espacios, 38(51), 23.
11. Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019, June). Genetic algorithms for the picker routing problem in multi-block warehouses. In International Conference on Business Information Systems (pp. 313-322). Springer, Cham.
12. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European journal of operational research, 182(2), 481-501.
13. Đukić, G., Česnik, V., & Opetuk, T. (2010). Order-picking methods and technologies for greener warehousing. Strojarstvo: časopis za teoriju i praksu u strojarstvu, 52(1), 23-31.
14. De Vries, J., De Koster, R., & Stam, D. (2016). Aligning order picking methods, incentive systems, and regulatory focus to increase performance. Production and Operations Management, 25(8), 1363-1376.
15. De Koster, R. B., Johnson, A. L., & Roy, D. (2017). Warehouse design and management. International Journal of Production Research, 55(21), 6327-6330.
16. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
17. Elbert, R. M., Franzke, T., Glock, C. H., & Grosse, E. H. (2017). The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Computers & Industrial Engineering, 111, 537-551.
18. Esmero, A. T., Branzuela, Q. R. S., Paypa, J. T., Rojo, S. M. S., Sacay, E. S., Selerio, E.F., & Ocampo, L. A. (2021). Heuristic comparative assessment of non-conventional warehouse designs. Engineering Management in Production and Services, 13(1), 89-103.
19. Frazelle, E. H. (2016). World-class warehousing and material handling. McGraw-Hill Education.
20. Geng, Y., Li, Y., & Lim, A. (2005, November). A very large-scale neighborhood search approach to capacitated warehouse routing problem. In 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI′05) (pp. 8-pp). IEEE.
21. Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), 1-21.
22. Gong, Y., & De Koster, R. (2008). A polling-based dynamic order picking system for online retailers. IIE transactions, 40(11), 1070-1082.
23. Guan, X. (2009). Multi-attribute Dispatching Method with Deadlock Avoidance for Robot Systems. China Mechanical Engineering, 20(19), 0.
24. Gue, K. R., & Meller, R. D. (2009). Aisle configurations for unit-load warehouses. IIE transactions, 41(3), 171-182
25. Gan, Z., & Tao, L. (2013). Control of automated guided vehicles based on multi-attribute dispatching rule. In Applied Mechanics and Materials (Vol. 278, pp. 1432-1435). Trans Tech Publications Ltd.
26. Goeke, D., & Schneider, M. (2021). Modeling Single-Picker Routing Problems in Classical and Modern Warehouses: INFORMS Journal on Computing Meritorious Paper Awardee. INFORMS Journal on Computing, 33(2), 436-451.
27. Hackman, S. T., Frazelle, E. H., Griffin, P. M., Griffin, S. O., & Vlasta, D. A. (2001). Benchmarking warehousing and distribution operations: an input-output approach. Journal of Productivity Analysis, 16(1), 79-100.
28. Hwang*, H., Oh, Y. H., & Lee, Y. K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
29. Ho, Y. C., & Liu, C. F. (2005). A design methodology for converting a regular warehouse into a zone-picking warehouse. Journal of the Chinese Institute of Industrial Engineers, 22(4), 332-345.
30. Ho, Y. C., & Chien, S. P. (2006). A comparison of two zone-visitation sequencing strategies in a distribution centre. Computers & Industrial Engineering, 50(4), 426-439.
31. Hsieh, L. F., & Tsai, L. (2006). The optimum design of a warehouse system on order picking efficiency. The International Journal of Advanced Manufacturing Technology, 28(5), 626-637.
32. Hwang, H. S., & Cho, G. S. (2006). A performance evaluation model for order picking warehouse design. Computers & Industrial Engineering, 51(2), 335-342.
33. Ho, Y. C., & Liu, H. C. (2009). The performance of load-selection rules and pickup-dispatching rules for multiple-load Robots. Journal of Manufacturing Systems, 28(1), 1-10.
34. Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load Robots. Journal of manufacturing systems, 31(3), 288-300.
35. Ho, Y. C., & Lin, J. W. (2017). Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Computers & Industrial Engineering, 113, 241-255.
36. Hong, S., & Kim, Y. (2017). A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. European Journal of Operational Research, 257(1), 185-196.
37. Jeong, B. H., & Randhawa, S. U. (2001). A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
38. Klei, C. M., & Kim, J. (1996). Robot dispatching. International Journal of Production Research, 34(1), 95-110.
39. Koo, P. H., Jang, J., & Suh, J. (2004). Estimation of part waiting time and fleet sizing in Robot systems. International journal of flexible Manufacturing Systems, 16(3), 211-228.
40. Koo, P. H. (2009). The use of bucket brigades in zone order picking systems. OR spectrum, 31(4), 759-774.
41. Karásek, J. (2013). An overview of warehouse optimization. International journal of advances in telecommunications, electrotechnics, signals and systems, 2(3), 111-117.
42. Kocaman, Y., Öztürkoğlu, Ö., & Gümüşoğlu, Ş. (2021). Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Central European Journal of Operations Research, 29(1), 323-355.
43. Lin, C. H., & Lu, I. Y. (1999). The procedure of determining the order picking strategies in distribution center. International Journal of Production Economics, 60, 301-307.
44. Lim, J. K., Kim, K. H., Yoshimoto, K., Lee, J. H., & Takahashi, T. (2003). A dispatching method for automated guided vehicles by using a bidding concept. OR Spectrum, 25(1), 25-44.
45. Le-Duc, T., & De Koster, R. M. (2007). Travel time estimation and order batching in a 2-block warehouse. European Journal of Operational Research, 176(1), 374-388.
46. Lau, H. Y., & Woo, S. O. (2008). An agent-based dynamic routing strategy for automated material handling systems. International Journal of Computer Integrated Manufacturing, 21(3), 269-288.
47. Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), 107-122.
48. Lee, H. Y., & Murray, C. C. (2019). Robotics in order picking: evaluating warehouse layouts for pick, place, and transport vehicle routing systems. International Journal of Production Research, 57(18), 5821-5841.
49. Locus Robotics official website (2020). Flexible Configuration, Retrieved December 18, 2023 from https://locusrobotics.com/features/bot-configurations/.
50. Locus Robotics official youtube video (2020). How it works, Retrieved December 18, 2023 from https://www.youtube.com/watch?v=MDKPRkcknRA.
51. Löffler, M., Boysen, N., & Schneider, M. (2022). Picker routing in Robot-assisted order picking systems. INFORMS Journal on Computing, 34(1), 440-462.
52. Mohsen, & Hassan, M. D. (2002). A framework for the design of warehouse layout. Facilities, 20(13/14), 432-440.
53. Manzini, R., Gamberi, M., & Regattieri, A. (2005). Design and control of a flexible order‐picking system (FOPS): a new integrated approach to the implementation of an expert system. Journal of Manufacturing Technology Management.
54. Mowrey, C. H., & Parikh, P. J. (2014). Mixed-width aisle configurations for order picking in distribution centers. European Journal of Operational Research, 232(1), 87-97.
55. Matusiak, M., De Koster, R., & Saarinen, J.(2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263 (3), 888-899.
56. Masae, M., Glock, C. H., & Vichitkunakorn, P. (2020). Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour. International Journal of Production Research, 58(17), 5337-5358.
57. Öztürkoğlu, Ö., Gue, K. R., & Meller, R. D. (2012). Optimal unit-load warehouse designs for single-command operations. Iie Transactions, 44(6), 459-475.
58. Öztürkoğlu, Ö., & Hoser, D. (2019). A discrete cross aisle design model for order-picking warehouses. European Journal of Operational Research, 275(2), 411-430.
59. Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management.
60. Petersen, C. G. (2002). Considerations in order picking zone configuration. International Journal of Operations & Production Management.
61. Privé, J., Renaud, J., Boctor, F., & Laporte, G. (2006). Solving a vehicle-routing problem arising in soft-drink distribution. Journal of the Operational Research Society, 57(9), 1045-1052.
62. Parikh, P. J., & Meller, R. D. (2008). Selecting between batch and zone order picking strategies in a distribution center. Transportation Research Part E: Logistics and Transportation Review, 44(5), 696-719.
63. Pohl, L. M., Meller, R. D., & Gue, K. R. (2009). Optimizing fishbone aisles for dual‐command operations in a warehouse. Naval Research Logistics (NRL), 56(5), 389-403.
64. Pohl, L. M., Meller, R. D., & Gue, K. R. (2011). Turnover-based storage in non-traditional unit-load warehouse designs. IIE Transactions, 43(10), 703-720.
65. Petersen, C. G., & Aase, G. R. (2017). Improving order picking efficiency with the use of cross aisles and storage policies. Open Journal of Business and Management, 5(01), 95.
66. Park, H., Son, D., Koo, B., & Jeong, B. (2021). Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm. Expert Systems with Applications, 165, 113959.
67. Pourvaziri, H., Pierreval, H., & Marian, H. (2021). Integrating facility layout design and aisle structure in manufacturing systems: Formulation and exact solution. European Journal of Operational Research, 290(2), 499-513.
68. Quader, S., & Castillo-Villar, K. K. (2018). Design of an enhanced multi-aisle order-picking system considering storage assignments and routing heuristics. Robotics and Computer-Integrated Manufacturing, 50, 13-29.
69. Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W. H. (2000). Warehouse design and control: Framework and literature review. European journal of operational research, 122(3), 515-533.
70. Roodbergen, K. J., & Koster, R. (2001a). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), 1865-1883.
71. Roodbergen, K. J., & De Koster, R. (2001b). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), 32-43.
72. Roodbergen, K. J., & Vis, I. F. (2006). A model for warehouse layout. IIE transactions, 38(10), 799-811.
73. Roodbergen, K. J., Sharp, G. P., & Vis, I. F. (2008). Designing the layout structure of manual order picking areas in warehouses. Iie Transactions, 40(11), 1032-1045.
74. Rimiene, K. (2008). THE DESIGN AND OPERATION OF WAREHOUSE. Economics & Management.
75. Ran, W., Liu, S., & Zhang, Z. (2020). A polling-based dynamic order-picking system considering priority orders. Complexity, 2020.
76. Şahin, R., Ertoğral, K., & Türkbey, O. (2010). A simulated annealing heuristic for the dynamic layout problem with budget constraint. Computers & Industrial Engineering, 59(2), 308-313.
77. Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming formulation for the single-picker routing problem. European Journal of Operational Research, 253(1), 68-84.
78. Schrotenboer, A. H., Wruck, S., Roodbergen, K. J., Veenstra, M., & Dijkstra, A. S. (2017). Order picker routing with product returns and interaction delays. International Journal of Production Research, 55(21), 6394-6406.
79. Shah, B., & Khanzode, V. (2017). A comprehensive review of warehouse operational issues. International Journal of Logistics Systems and Management, 26(3), 346-378.
80. Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.
81. Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons.
82. Urzúa, M., Mendoza, A., & González, A. O. (2019). Evaluating the impact of order picking strategies on the order fulfilment time: A simulation study. Acta Logist. Int. Sci. J. Logist, 6(4), 103-114.
83. Vivaldini, K. C., Rocha, L. F., Becker, M., & Moreira, A. P. (2015). Comprehensive review of the dispatching, scheduling and routing of Robots. In CONTROLO’2014–proceedings of the 11th Portuguese conference on automatic control (pp. 505-514). Springer, Cham.
84. Van Gils, T., Ramaekers, K., Braekers, K., Depaire, B., & Caris, A. (2018). Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. International Journal of Production Economics, 197, 243-261.
85. Yamashita, H. (2001). Analysis of dispatching rules of Robot systems with multiple vehicles. IIE Transactions, 33(10), 889-895.
86. Yener, F., & Yazgan, H. R. (2019). Optimal warehouse design: Literature review and case study application. Computers & Industrial Engineering, 129, 1-13.
87. Yetkin Ekren, B. (2021). A multi-objective optimisation study for the design of an AVS/RS warehouse. International Journal of Production Research, 59(4), 1107-1126.
88. Zare Mehrjerdi, Y., Alipour, M., & Mostafaeipour, A. (2018). Integrated order batching and distribution scheduling in a single-block order picking warehouse considering S-shape routing policy. International Journal of Engineering, 31(10), 1723-1733.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明