博碩士論文 111456025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.144.172.81
姓名 阮健銘(Jian-Ming Ruan)  查詢紙本館藏   畢業系所 工業管理研究所在職專班
論文名稱 製藥業連續製程可行性之外部環境評估
(Assessing the Impacts of External Environments on the Feasibility of Continuous Manufacturing in the Pharmaceutical Industry)
相關論文
★ 以模擬退火演算法 進行化鍍製程無關聯平行機台之排程★ 以混合整數規劃 安插電鍍銅平行機台之緊急訂單
★ 以混合整數規劃進行非相關平行機台之批次製造排程★ 考量最大利潤之再生能源發電業最佳能源分配
★ 工業用電考量時間電價之太陽能發電系統最佳配置規劃★ 應用深度學習優化塗佈機之預測性維護
★ 應用資料探勘提升伺服器CPU熱流驗證效能★ 半導體設備商因應歐盟碳邊境調整機制之供應商遴選模式
★ 以螞蟻演算法最佳化具備時間窗考量之貨櫃電池運輸路徑★ 以混合整數規劃優化移動式充電樁存放位置
★ 快遞轉運中心以風光互補發電提升電動車隊用電之綠能佔比★ 以基因演算法優化無人機送餐路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 因應疫後復甦及地緣政治導致的去全球化影響,生物科技快速發展。CDMO成為生物科技領域的關鍵環節,為製藥公司提供委外服務。2021年研究發現製藥業的碳排放量高於汽車產業55%,年碳足跡約1.97億噸二氧化碳當量。為了減少碳排放,製藥業採取節能製造流程、使用再生資源及減少化學品使用等方式。創新和改革使生技製藥公司在環保方面扮演積極角色,推動全球永續發展。
為提高產量和品質,製藥業逐漸轉為連續製程,簡化流程,減少異常,縮短週期,降低錯誤風險。連續製程在永續發展推動下成為主流趨勢,降低碳排放、減少廢棄物並提高能源效率。然而,技術轉換成本、人員訓練及品質控管挑戰使製程轉換困難。PESTEL模型可從政治、經濟、社會、技術、環境及法律六個層面探討這些影響,為長期策略制定提供方向。
本研究使用PESTEL模型評估疫情(COVID-19, 2019~2023)後復甦、人口老齡化及國際地緣政治變化對製藥業製程改善的影響。政治上,政府支持技術發展降低企業風險及成本;經濟上,去全球化促使強化供應鏈合作應對貿易戰及地緣政治風險;社會上,製藥業需符合社會責任及品牌形象期望;科技上,連續製程需更多資源,企業需提升創新能力、研發技術及生產效率;環境上,推動技術創新及承擔社會責任是未來趨勢;法律上,中美貿易戰及美國法案降低藥價影響企業成本及獲利,《生技醫藥產業發展條例》促進風險分散及多元化發展。綜合來看,製程變更為連續製程是一個合適選擇。
摘要(英) In response to post-pandemic recovery, aging of population and the de-globalization effects caused by geopolitical factors, the biotechnology sector is rapidly developing. CDMOs have become a crucial component in biotechnology, providing outsourcing services for pharmaceutical companies. A 2021 study indicated that the pharmaceutical industry’s carbon emissions are 55% higher than those of the automotive industry, with an annual carbon footprint of approximately 197 million tons of CO2 equivalent. To reduce carbon emissions, the pharmaceutical industry is adopting energy-efficient manufacturing processes, using renewable resources, and reducing the use of chemicals. Innovations and reforms are enabling biotech pharmaceutical companies to play an active role in environmental protection, promoting global sustainable development.
To increase production and quality, the pharmaceutical industry is gradually transitioning to continuous manufacturing, which simplifies processes, reduces anomalies, shortens cycles, and lowers the risk of errors. Continuous manufacturing is becoming a mainstream trend, reducing carbon emissions, minimizing waste, and improving energy efficiency. However, the challenges of technological transition costs, personnel training, and quality control make process conversion difficult. The PESTEL model can be used to explore these impacts from six aspects: Political, Economic, Social, Technological, Environmental, and Legal, providing direction for long-term strategy formulation.
This study uses the PESTEL model to evaluate the impact of post-pandemic recovery (COVID-19, 2019~2023) and geopolitical changes on process improvements in the pharmaceutical industry. Politically, government support for technological development reduces corporate risks and costs. Economically, de-globalization strengthens supply chain cooperation to cope with trade wars and geopolitical risks. Socially, the pharmaceutical industry needs to meet social responsibility and brand image expectations. Technologically, continuous manufacturing requires more resources, and companies need to enhance innovation capabilities, R&D technology, and production efficiency. Environmentally, promoting technological innovation and taking on social responsibility are future trends. Legally, the China-US trade war and US legislation to lower prescription drug prices impact corporate costs and profits. The "Act for the Development of Biotech and Pharmaceutical Industry" promotes risk diversification and diversified development. Overall, the shift to continuous manufacturing is a suitable choice. This study provides a clear analysis of the external environment, aiding future decision-making for companies.
關鍵字(中) ★ 外部環境
★ 連續製程
★ PESTEL模型
★ 製藥製程
★ 永續規劃
關鍵字(英) ★ External environment
★ Continuous manufacturing
★ PESTEL model
★ Pharmaceutical process
★ Sustainable planning
論文目次 摘要…………………………………....……………………………………………………....i
Abstract……………………………………………………………………………………....ii
致謝………....……………………………………………………………………………..iv
目錄……………………………………………………………………………………..…....v
圖目錄…...……………………………………………………………………………..…...vii
表目錄……...……………………………………………………………………………....viii
1第一章 研究問題 1
1.1 製藥產業 1
1.2 研究動機 3
1.3 問題描述 8
2第二章 文獻探討 10
2.1 製藥永續研究 10
2.2 製藥製程精進發展 11
2.3 製藥連續製程品管相關研究 12
2.4 PEST模型探討 13
3第三章 研究方法 15
3.1問題分析 15
3.2 PESTEL模型 16
3.2.1 政治因素(Political) 16
3.2.2 經濟因素(Economic) 17
3.2.3 社會因素(Social) 19
3.2.4 科技因素(Technological) 20
3.2.5 環境因素(Environmental) 21
3.2.6 法律因素(Legal) 22
4第四章 研究結果與分析 24
4.1 外部環境對製藥產業製程的影響 24
4.1.1 政治因素(Political) 24
4.1.2 經濟因素(Economic) 26
4.1.3 社會因素(Social) 28
4.1.4 科技因素(Technological) 30
4.1.5 環境因素(Environmental) 33
4.1.6 法律因素(Legal) 34
4.2 分析發現 37
5第五章 結論與建議 39
5.1 研究結論 39
5.2 後續研究 40
6參考文獻 41
參考文獻 1. 中華民國內政部(2023)。111年國人平均壽命79.84歲。檢自
https://www.moi.gov.tw/News_Content.aspx?n=4&s=282793(擷取日期:2024年5月10日)。
2. 世界衛生組織 (2022)。老齡化與健康。檢自https://www.who.int/zh/news-room/fact-sheets/detail/ageing-and-health(擷取日期:2023年11月28日)。
3. 台灣經濟研究院(2023)。「2024台灣總體經濟預測」新聞稿。檢自
https://www.tier.org.tw/forecast/macro_trends_annual.aspx(擷取日期:2024年4月5日)。
4. 行政院主計總處(2024)。「國民所得統計及國內經濟情勢展望」新聞稿。檢自
https://ws.dgbas.gov.tw/001/Upload/463/relfile/10980/233047/news11302.pdf(擷取日期:2024年5月7日)。
5. 林志穎、吳佳蓉、曾琳蘆、鄭雅惠、鄒禮澤、周維宜(2021)。應用連續式製程技術於生物藥開發。化工,第68卷第二期,第27頁至第34頁。
6. 財團法人醫藥品查驗中心(2023)。連續製程的品質考量之指導原則。檢自https://www.cde.org.tw/Content/Files/Knowledge/%E9%80%A3%E7%BA%8C%E8%A3%BD%E7%A8%8B%E7%9A%84%E5%93%81%E8%B3%AA%E8%80%83%E9%87%8F%E4%B9%8B%E6%8C%87%E5%B0%8E%E5%8E%9F%E5%89%87_%E7%AC%AC%E4%B8%80%E7%89%88.pdf(擷取日期:2023年8月14日)。
7. 陳立奇 (2021)。台灣藥業社會責任(CSR)公開資訊之現況分析。藥學雜誌電子報,第147冊第二期。檢自https://jtp.taiwan-pharma.org.tw/147/023.html (擷取日期:2023年11月18日)。
8. 楊品誠(2016)。臺灣PIC/S GMP製藥現況與製程品質暨實例分享。台灣臨床藥學雜誌,第24卷第四期,第300頁至第307頁。
9. 經濟部工業局(2021)。未來3年重點產業人才調查及推估。檢自
https://theme.ndc.gov.tw/manpower/cp.aspx?n=3210F30C7F1047EA&s=F2B0AE5B8E182A57 (擷取日期:2023年11月28日)。
10. 經濟部工業局(2022)。2022/2023生技產業白皮書。檢自
https://www2.itis.org.tw/PubReport/PubReport_Detail.aspx?rpno=4531985&industry=5&ctgy=37&free=&type=pubreport(擷取日期:2023年10月15日)。
11. 經濟部工業局(2023)。2023/2024產業技術白皮書。檢自
https://www2.itis.org.tw/pubreport/PubReport_Detail.aspx?rpno=53765796(擷取日期:2023年11月15日)。
12. 經濟部 (2022)。生技醫藥產業發展條例。檢自
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0040046(擷取日期:2024年4月18日)。
13. 經濟部 (2023)。產業創新條例。檢自https://law.moj.gov.tw/ LawClass/LawAll.aspx?pcode=J0040051(擷取日期:2024年2月8日)。
14. 資誠生醫透視 (2021)。全球藥廠啟動綠色轉型。檢自
https://www.pwc.tw/zh/publications/bio-insights/bio-insights-2201.html(擷取日期:2023年12月10日)。
15. 資誠生醫透視 (2022)。2022全球生技醫藥CDMO趨勢。檢自
https://www.pwc.tw/zh/publications/bio-insights/pdf/bio-insights-2207.pdf(擷取日期:2023年11月15日)。
16. 劉曉君(2022)。產業技術評析-迎戰氣候變遷,生技製藥產業朝永續轉型目標前進。檢自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=426(擷取日期:2023年7月15日)。
17. 劉曉君(2023)。產業技術評析-國際生技製藥產業藥品製造之減碳工具/技術應用掃描。檢自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=505(擷取日期:2023年12月11日)。
英文文獻
18. Aguilar, F. J. (1967). Scanning the Business Environment. MacMillan Co., New York.
19. Bayer (2022). “Felix Hoffmann.” https://www.bayer.com/en/history/felix-hoffmann (Accessed Jan 11, 2024).
20. Burcham, C. L., Florence, A. J. & Johnson, M. D. (2018). “Continuous Manufacturing in Pharmaceutical Process Development & Manufacturing.” Annual Review of Chemical and Biomolecular Engineering, Vol. 9, 253-281.
21. Choma´c-Pierzecka, E. (2023). “Pharmaceutical Companies in the Light of the Idea of Sustainable Development—An Analysis of Selected Aspects of Sustainable Management.” https://www.mdpi.com/2071-1050/15/11/8889 (Accessed Jan 26, 2024).
22. Çitilci, T. & Akbalik, M. (2020). “The Importance of PESTEL Analysis for Environmental Scanning Process.” In Handbook of Research on Decision-Making Techniques in Financial Marketing, chapter 16, 336-357. (Dinçer, H. & Yüksel, S., Eds.), Hershey PA, USA: IGI Global.
23. Cubanski, J. & Neuman, T. (2023). “What to Know about Medicare Spending and Financing” Kaiser Family Foundation. https://www.kff.org/medicare/issue-brief/what-to-know-about-medicare-spending-and-financing (Accessed Jan 26, 2024).
24. Cue, B. W. & Zhang, J. (2009). “Green process chemistry in the pharmaceutical industry.” Green Chemistry Letters & Reviews, Vol. 2 (4), 193-211.
25. Deep Pharma Intelligence (2023). “Artificial Intelligence for Drug Discovery.” Landscape Overview Q1 2023. https://www.deep-pharma.tech/ai-in-dd-q1-2023-subscribe (Accessed May 26, 2024).
26. Du, H. (2022). “Sustainable Development Strategy Based on FAW Bestune Automobile Industry: Focus on PEST Model Analysis.” Journal of Education, Humanities and Social Sciences, Vol. 2, 206-211.
27. Eldin. A. B., Ismaiel, O. A., Hassan, W. E. & Shalaby, A. A. (2016). “Green Analytical Chemistry: Opportunities for Pharmaceutical Quality Control.” Journal of Analytical Chemistry, Vol. 71 (9), 861–871.
28. Gallagher, M. (2024). “Biosecure Act.” https://www.congress.gov/bill/118th-congress/house-bill/7085/text (Accessed May 11, 2024).
29. Ganesh, S. & Reklatis, G. V. (2020). “Basic Principles of Continuous Manufacturing.” Continuous Pharmaceutical Processing, Vol. 42, chapter 1, 1-21. (Nagy, Z. K., Hagrasy, E. A. & Litster, J., Eds), Cham, Switzerland: Springer.
30. Gerogiorgis, D. I. & Jolliffe, H. G. (2015). “Continuous pharmaceutical process engineering and economics: Investigating technical efficiency, environmental impact and economic viability.” Chimica Oggi-Chemistry Today, Vol. 33 (6), 29-32.
31. Internal Revenue Service (2022). “The Inflation Reduction Act of 2022.” https://www.irs.gov/inflation-reduction-act-of-2022 (Accessed May 14, 2024).
32. Lee, S. L., O’Connor, T. F., Yang, X., Cruz, C. N., Chatter, S., Madurawe, R. D., Moore, R. D., Moore, C. M. V., Yu, L. X. & Woodcock, J. (2015). “Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production.” Journal Pharmaceutical Innovation, Vol. 10, 191–199.
33. Liu, P., Jin, H., Chen, Y., Wang, D., Yan, H., Wu M., Zhao, F.& Zhu, W. (2023). “Process analytical technologies and self-optimization algorithms in automated pharmaceutical continuous manufacturing.” Chinese Chemical Letters, Vol. 35 (3), Article 108877.
34. Machida, K. & Yasukouchi, H. (2022). “Innovative Process Development of Pharmaceutical Intermediates Under Continuous-Flow System.” Flow and Microreactor Technology in Medicinal Chemistry, chapter 9, 311-332. (Alza, E., Ed), Weinheim, Germany: Wiley-VCH.
35. Russell, A. & Capace, M. (2022). “Pharmaceutical Process Modeling.” AAPS PharmSciTech, Vol. 23 (4). https://doi.org/10.1208/s12249-022-02246-4 (Accessed Jan 27, 2024).
36. Tao, Y., Zhu, S., Smith, J., Lakhani, N. & You, F. (2023). “Environmental Sustainability of the Globalized Pharmaceutical Supply Chains: The Case of Tenofovir Disoproxil Fumarate.” ACS Sustainable Chemistry & Engineering. 2023, Vol. 11 (17), 6510-6522.
37. The White House (2023). “FACT SHEET: Biden-⁠Harris Administration Announces First Ten Drugs Selected for Medicare Price Negotiation.” https://www.whitehouse.gov/briefing-room/statements-releases/2023/08/29/fact-sheet-biden-harris-administration-announces-first-ten-drugs-selected-for-medicare-price-negotiation (Accessed May 5, 2024).
38. U.S. Food and Drug Administration [FDA] (2004). “PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance.” Guidance for Industry. https://www.fda.gov/media/71012/download (Accessed Apr 5, 2024).
39. U.S. Food and Drug Administration [FDA] (2009). “Q8(R2) Pharmaceutical Development” Guidance for Industry. https://www.fda.gov/media/71535/download(Accessed Apr 5, 2024).
40. U.S. Food and Drug Administration [FDA] (2023). “Q13 Continuous Manufacturing of Drug Substances and Drug Products.” Guidance Document, FDA-2021-D-1047.
41. Wang, L, Zhao, F. & Zhang, G. (2022). “Analysis on the Impact of Large-Scale Sports Events on Regional Economy Based on SWOT-PEST Model.” Journal of Mathematics, Vol. 2022, Article 7769128.
42. Zhang, Y (2022). “Operating ecology and financial risk analysis of the real estate industry-Empirical analysis based on SWOT-PEST analysis and the F-Probit model.” BCP business & management, Vol. 23, 277-282.
43. Zhang, Y. & Lai, X. (2014). “Analysis on Influencing Factors of Entrepreneurial Environment of College Students Based on PEST Model.” In 3rd International Conference on Science and Social Research (ICSSR 2014). Atlantis Press.
44. Zhao, L. & Wang, Y. (2021). “Countermeasures Analysis of Tourism Development in Hubei Province in Post-Pandemic Era - Based on SWOT-PEST Model.” E3S Web Conferences, Vol. 251, 4.
指導教授 王啓泰(Chi-Tai Wang) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明