摘要(英) |
In response to post-pandemic recovery, aging of population and the de-globalization effects caused by geopolitical factors, the biotechnology sector is rapidly developing. CDMOs have become a crucial component in biotechnology, providing outsourcing services for pharmaceutical companies. A 2021 study indicated that the pharmaceutical industry’s carbon emissions are 55% higher than those of the automotive industry, with an annual carbon footprint of approximately 197 million tons of CO2 equivalent. To reduce carbon emissions, the pharmaceutical industry is adopting energy-efficient manufacturing processes, using renewable resources, and reducing the use of chemicals. Innovations and reforms are enabling biotech pharmaceutical companies to play an active role in environmental protection, promoting global sustainable development.
To increase production and quality, the pharmaceutical industry is gradually transitioning to continuous manufacturing, which simplifies processes, reduces anomalies, shortens cycles, and lowers the risk of errors. Continuous manufacturing is becoming a mainstream trend, reducing carbon emissions, minimizing waste, and improving energy efficiency. However, the challenges of technological transition costs, personnel training, and quality control make process conversion difficult. The PESTEL model can be used to explore these impacts from six aspects: Political, Economic, Social, Technological, Environmental, and Legal, providing direction for long-term strategy formulation.
This study uses the PESTEL model to evaluate the impact of post-pandemic recovery (COVID-19, 2019~2023) and geopolitical changes on process improvements in the pharmaceutical industry. Politically, government support for technological development reduces corporate risks and costs. Economically, de-globalization strengthens supply chain cooperation to cope with trade wars and geopolitical risks. Socially, the pharmaceutical industry needs to meet social responsibility and brand image expectations. Technologically, continuous manufacturing requires more resources, and companies need to enhance innovation capabilities, R&D technology, and production efficiency. Environmentally, promoting technological innovation and taking on social responsibility are future trends. Legally, the China-US trade war and US legislation to lower prescription drug prices impact corporate costs and profits. The "Act for the Development of Biotech and Pharmaceutical Industry" promotes risk diversification and diversified development. Overall, the shift to continuous manufacturing is a suitable choice. This study provides a clear analysis of the external environment, aiding future decision-making for companies. |
參考文獻 |
1. 中華民國內政部(2023)。111年國人平均壽命79.84歲。檢自
https://www.moi.gov.tw/News_Content.aspx?n=4&s=282793(擷取日期:2024年5月10日)。
2. 世界衛生組織 (2022)。老齡化與健康。檢自https://www.who.int/zh/news-room/fact-sheets/detail/ageing-and-health(擷取日期:2023年11月28日)。
3. 台灣經濟研究院(2023)。「2024台灣總體經濟預測」新聞稿。檢自
https://www.tier.org.tw/forecast/macro_trends_annual.aspx(擷取日期:2024年4月5日)。
4. 行政院主計總處(2024)。「國民所得統計及國內經濟情勢展望」新聞稿。檢自
https://ws.dgbas.gov.tw/001/Upload/463/relfile/10980/233047/news11302.pdf(擷取日期:2024年5月7日)。
5. 林志穎、吳佳蓉、曾琳蘆、鄭雅惠、鄒禮澤、周維宜(2021)。應用連續式製程技術於生物藥開發。化工,第68卷第二期,第27頁至第34頁。
6. 財團法人醫藥品查驗中心(2023)。連續製程的品質考量之指導原則。檢自https://www.cde.org.tw/Content/Files/Knowledge/%E9%80%A3%E7%BA%8C%E8%A3%BD%E7%A8%8B%E7%9A%84%E5%93%81%E8%B3%AA%E8%80%83%E9%87%8F%E4%B9%8B%E6%8C%87%E5%B0%8E%E5%8E%9F%E5%89%87_%E7%AC%AC%E4%B8%80%E7%89%88.pdf(擷取日期:2023年8月14日)。
7. 陳立奇 (2021)。台灣藥業社會責任(CSR)公開資訊之現況分析。藥學雜誌電子報,第147冊第二期。檢自https://jtp.taiwan-pharma.org.tw/147/023.html (擷取日期:2023年11月18日)。
8. 楊品誠(2016)。臺灣PIC/S GMP製藥現況與製程品質暨實例分享。台灣臨床藥學雜誌,第24卷第四期,第300頁至第307頁。
9. 經濟部工業局(2021)。未來3年重點產業人才調查及推估。檢自
https://theme.ndc.gov.tw/manpower/cp.aspx?n=3210F30C7F1047EA&s=F2B0AE5B8E182A57 (擷取日期:2023年11月28日)。
10. 經濟部工業局(2022)。2022/2023生技產業白皮書。檢自
https://www2.itis.org.tw/PubReport/PubReport_Detail.aspx?rpno=4531985&industry=5&ctgy=37&free=&type=pubreport(擷取日期:2023年10月15日)。
11. 經濟部工業局(2023)。2023/2024產業技術白皮書。檢自
https://www2.itis.org.tw/pubreport/PubReport_Detail.aspx?rpno=53765796(擷取日期:2023年11月15日)。
12. 經濟部 (2022)。生技醫藥產業發展條例。檢自
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0040046(擷取日期:2024年4月18日)。
13. 經濟部 (2023)。產業創新條例。檢自https://law.moj.gov.tw/ LawClass/LawAll.aspx?pcode=J0040051(擷取日期:2024年2月8日)。
14. 資誠生醫透視 (2021)。全球藥廠啟動綠色轉型。檢自
https://www.pwc.tw/zh/publications/bio-insights/bio-insights-2201.html(擷取日期:2023年12月10日)。
15. 資誠生醫透視 (2022)。2022全球生技醫藥CDMO趨勢。檢自
https://www.pwc.tw/zh/publications/bio-insights/pdf/bio-insights-2207.pdf(擷取日期:2023年11月15日)。
16. 劉曉君(2022)。產業技術評析-迎戰氣候變遷,生技製藥產業朝永續轉型目標前進。檢自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=426(擷取日期:2023年7月15日)。
17. 劉曉君(2023)。產業技術評析-國際生技製藥產業藥品製造之減碳工具/技術應用掃描。檢自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=505(擷取日期:2023年12月11日)。
英文文獻
18. Aguilar, F. J. (1967). Scanning the Business Environment. MacMillan Co., New York.
19. Bayer (2022). “Felix Hoffmann.” https://www.bayer.com/en/history/felix-hoffmann (Accessed Jan 11, 2024).
20. Burcham, C. L., Florence, A. J. & Johnson, M. D. (2018). “Continuous Manufacturing in Pharmaceutical Process Development & Manufacturing.” Annual Review of Chemical and Biomolecular Engineering, Vol. 9, 253-281.
21. Choma´c-Pierzecka, E. (2023). “Pharmaceutical Companies in the Light of the Idea of Sustainable Development—An Analysis of Selected Aspects of Sustainable Management.” https://www.mdpi.com/2071-1050/15/11/8889 (Accessed Jan 26, 2024).
22. Çitilci, T. & Akbalik, M. (2020). “The Importance of PESTEL Analysis for Environmental Scanning Process.” In Handbook of Research on Decision-Making Techniques in Financial Marketing, chapter 16, 336-357. (Dinçer, H. & Yüksel, S., Eds.), Hershey PA, USA: IGI Global.
23. Cubanski, J. & Neuman, T. (2023). “What to Know about Medicare Spending and Financing” Kaiser Family Foundation. https://www.kff.org/medicare/issue-brief/what-to-know-about-medicare-spending-and-financing (Accessed Jan 26, 2024).
24. Cue, B. W. & Zhang, J. (2009). “Green process chemistry in the pharmaceutical industry.” Green Chemistry Letters & Reviews, Vol. 2 (4), 193-211.
25. Deep Pharma Intelligence (2023). “Artificial Intelligence for Drug Discovery.” Landscape Overview Q1 2023. https://www.deep-pharma.tech/ai-in-dd-q1-2023-subscribe (Accessed May 26, 2024).
26. Du, H. (2022). “Sustainable Development Strategy Based on FAW Bestune Automobile Industry: Focus on PEST Model Analysis.” Journal of Education, Humanities and Social Sciences, Vol. 2, 206-211.
27. Eldin. A. B., Ismaiel, O. A., Hassan, W. E. & Shalaby, A. A. (2016). “Green Analytical Chemistry: Opportunities for Pharmaceutical Quality Control.” Journal of Analytical Chemistry, Vol. 71 (9), 861–871.
28. Gallagher, M. (2024). “Biosecure Act.” https://www.congress.gov/bill/118th-congress/house-bill/7085/text (Accessed May 11, 2024).
29. Ganesh, S. & Reklatis, G. V. (2020). “Basic Principles of Continuous Manufacturing.” Continuous Pharmaceutical Processing, Vol. 42, chapter 1, 1-21. (Nagy, Z. K., Hagrasy, E. A. & Litster, J., Eds), Cham, Switzerland: Springer.
30. Gerogiorgis, D. I. & Jolliffe, H. G. (2015). “Continuous pharmaceutical process engineering and economics: Investigating technical efficiency, environmental impact and economic viability.” Chimica Oggi-Chemistry Today, Vol. 33 (6), 29-32.
31. Internal Revenue Service (2022). “The Inflation Reduction Act of 2022.” https://www.irs.gov/inflation-reduction-act-of-2022 (Accessed May 14, 2024).
32. Lee, S. L., O’Connor, T. F., Yang, X., Cruz, C. N., Chatter, S., Madurawe, R. D., Moore, R. D., Moore, C. M. V., Yu, L. X. & Woodcock, J. (2015). “Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production.” Journal Pharmaceutical Innovation, Vol. 10, 191–199.
33. Liu, P., Jin, H., Chen, Y., Wang, D., Yan, H., Wu M., Zhao, F.& Zhu, W. (2023). “Process analytical technologies and self-optimization algorithms in automated pharmaceutical continuous manufacturing.” Chinese Chemical Letters, Vol. 35 (3), Article 108877.
34. Machida, K. & Yasukouchi, H. (2022). “Innovative Process Development of Pharmaceutical Intermediates Under Continuous-Flow System.” Flow and Microreactor Technology in Medicinal Chemistry, chapter 9, 311-332. (Alza, E., Ed), Weinheim, Germany: Wiley-VCH.
35. Russell, A. & Capace, M. (2022). “Pharmaceutical Process Modeling.” AAPS PharmSciTech, Vol. 23 (4). https://doi.org/10.1208/s12249-022-02246-4 (Accessed Jan 27, 2024).
36. Tao, Y., Zhu, S., Smith, J., Lakhani, N. & You, F. (2023). “Environmental Sustainability of the Globalized Pharmaceutical Supply Chains: The Case of Tenofovir Disoproxil Fumarate.” ACS Sustainable Chemistry & Engineering. 2023, Vol. 11 (17), 6510-6522.
37. The White House (2023). “FACT SHEET: Biden-Harris Administration Announces First Ten Drugs Selected for Medicare Price Negotiation.” https://www.whitehouse.gov/briefing-room/statements-releases/2023/08/29/fact-sheet-biden-harris-administration-announces-first-ten-drugs-selected-for-medicare-price-negotiation (Accessed May 5, 2024).
38. U.S. Food and Drug Administration [FDA] (2004). “PAT - A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance.” Guidance for Industry. https://www.fda.gov/media/71012/download (Accessed Apr 5, 2024).
39. U.S. Food and Drug Administration [FDA] (2009). “Q8(R2) Pharmaceutical Development” Guidance for Industry. https://www.fda.gov/media/71535/download(Accessed Apr 5, 2024).
40. U.S. Food and Drug Administration [FDA] (2023). “Q13 Continuous Manufacturing of Drug Substances and Drug Products.” Guidance Document, FDA-2021-D-1047.
41. Wang, L, Zhao, F. & Zhang, G. (2022). “Analysis on the Impact of Large-Scale Sports Events on Regional Economy Based on SWOT-PEST Model.” Journal of Mathematics, Vol. 2022, Article 7769128.
42. Zhang, Y (2022). “Operating ecology and financial risk analysis of the real estate industry-Empirical analysis based on SWOT-PEST analysis and the F-Probit model.” BCP business & management, Vol. 23, 277-282.
43. Zhang, Y. & Lai, X. (2014). “Analysis on Influencing Factors of Entrepreneurial Environment of College Students Based on PEST Model.” In 3rd International Conference on Science and Social Research (ICSSR 2014). Atlantis Press.
44. Zhao, L. & Wang, Y. (2021). “Countermeasures Analysis of Tourism Development in Hubei Province in Post-Pandemic Era - Based on SWOT-PEST Model.” E3S Web Conferences, Vol. 251, 4. |