博碩士論文 111324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.144.42.173
姓名 莊瑞民(Ruei-Min Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高強度聚乙烯醇物理共熔凝膠:聚合物分子量、DES 組成和熱處理的影響
(High-strength Poly(vinyl alcohol) Physical Eutectogels: Effects of polymer molecular weight, DES composition, and heat treatment)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 使用一步製造製程來製造可拉伸的物理共熔凝膠。將聚乙烯醇(PVA)與作為氫鍵受體的氯化膽鹼以及作為氫鍵供體的乙二醇或甘油(Gly)直接混合。此過程在低共熔溶劑(DES)中形成大量PVA微晶域,這些微晶域充當共熔凝膠中的物理交聯點。研究系統地研究了PVA分子量、DES組成和各種熱處理對共熔凝膠機械性能的影響。應力-應變曲線表明,較高的PVA分子量、在DES中添加Gly以及重複凍融循環可以增強PVA物理共析凝膠的機械性能。最後,使用掃描電子顯微鏡和 X 射線衍射來檢查和分析聚合物網絡和微晶域的孔徑、結晶度和微晶域尺寸。
摘要(英) A one-step manufacturing process is employed to fabricate stretchable physical eutectogels. It involves directly mixing polyvinyl alcohol (PVA) with choline chloride as a hydrogen bond acceptor and either ethylene glycol or glycerol (Gly) as a hydrogen bond donor. This process results in the formation of numerous crystallite domains of PVA within the deep eutectic solvent (DES), which act as physical crosslinking points in the eutectogel. The study systematically investigates the effects of PVA molecular weight, DES composition, and various heat treatments on the mechanical properties of eutectogels. The stress-strain curves demonstrate that a higher PVA molecular weight, the addition of Gly to the DES, and repeated freeze-thaw cycles can enhance the mechanical properties of the PVA physical eutectogel. Finally, scanning electron microscopy and X-ray diffraction are used to examine and analyze the polymer networks and crystallite domains in terms of pore size, crystallinity, and crystallite domain size.
關鍵字(中) ★ 聚乙烯醇
★ 深共熔溶劑
★ 物理共熔凝膠
★ 結晶度
★ 機械性質
關鍵字(英) ★ polyvinyl alcohol
★ deep eutectic solvent
★ physical eutectogel
★ crystallinity
★ mechanical properties
論文目次 摘要 i
ABSTRACT ii
LIST OF CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLE v
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 EXPERIMENTS 4
2-1 Materials 4
2-2 One-step fabrication of PVA physical eutectogels 4
2-3 Mechanical Test 4
2-4 Conductivity Measurement 5
2-5 Characterization and analysis of eutectogels 5
CHAPTER 3 RESULTS AND DISCUSSIONS 7
3-1 Effect of PVA molecular weight on eutectogel performances 7
3-2 Effect of the DES composition on eutectogel performances 13
3-3 Effect of heat treatment on PVA eutectogel performances 19
CHAPTER 4 CONCLUSION 24
REFERENCES 26
參考文獻 [1] Chang, Q., et al., "Protein Gel′s Phase Transition: Toward Superiorly Transparent and Hysteresis-Free Wearable Electronics." Advanced Functional Materials, vol. 30, no. 27, 2020.
[2] Hao, M.M., et al., "Stretchable, Self-Healing, Transient Macromolecular Elastomeric Gel for Wearable Electronics." Microsystems & Nanoengineering, vol. 5, 2019.
[3] Kim, Y. M. and H. C. Moon. "Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics." Advanced Functional Materials, vol. 30, no. 4, 2020.
[4] Gao, Q., et al., "A Highly Adhesive, Self-Healing and Perdurable Pedot:Pss/Paa-Fe3+ Gel Enabled by Multiple Non-Covalent Interactions for Multi-Functional Wearable Electronics." Journal of Materials Chemistry C, vol. 10, no. 16, 2022, pp. 6271-80.
[5] Wang, Xuechuan et al. "Engineered Gelatin-Based Conductive Hydrogels for Flexible Wearable Electronic Devices: Fundamentals and Recent Advances." Journal of Science: Advanced Materials and Devices, vol. 7, no. 3, 2022, p. 100451.
[6] Li, R. et al. "Highly Transparent, Self-Healing Conductive Elastomers Enabled by Synergistic Hydrogen Bonding Interactions." Chemical Engineering Journal, vol. 393, 2020.
[7] Lv, Pinlei et al. "Hydrophobic Ionic Liquid Gel-Based Triboelectric Nanogenerator: Next Generation of Ultrastable, Flexible, and Transparent Power Sources for Sustainable Electronics." ACS Applied Materials & Interfaces, vol. 12, no. 13, 2020, pp. 15012-22.
[8] Chu, X., et al., "Cross-Links–Entanglements Integrated Networks Contributing to Highly Resilient, Soft, and Self-Adhesive Elastomers with Low Hysteresis for Green Wearable Electronics." ACS Applied Materials & Interfaces, vol. 14, no. 14, 2022, pp. 16631-40.
[9] Jiang, Nan et al. "Supramolecular Oligourethane Gel with Multicolor Luminescence Controlled by Mechanically Sensitive Hydrogen-Bonding." Chemistry of Materials, vol. 32, no. 13, 2020, pp. 5776-84.
[10] Amharar, S., A. Atsay, and A. Aydogan, "Ion Pair Recognition Based Supramolecular Polymer Showing Rapid and Reversible Sol–Gel Transition through Van Der Waals Interactions." ACS Applied Polymer Materials, vol. 2, no. 12, 2020, pp. 5371-76.
[11] Suzuki, Masahiro et al. "Effects of Hydrogen Bonding and Van Der Waals Interactions on Organogelation Using Designed Low-Molecular-Weight Gelators and Gel Formation at Room Temperature." Langmuir, vol. 19, no. 21, 2003, pp. 8622-24.
[12] Tamate, R. et al. "Self-Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding." Advanced Materials, vol. 30, no. 36, 2018.
[13] Lee, Hyun-Hee et al. "Fast Healing of Ionic Bonds in Tough Hydrogels under an Acoustic Excitation." Extreme Mechanics Letters, vol. 33, 2019, p. 100572.
[14] Hoffman, Allan S. "Hydrogels for Biomedical Applications." Advanced Drug Delivery Reviews, vol. 64, 2012, pp. 18-23.
[15] Ho, Tzu-Chuan et al. "Hydrogels: Properties and Applications in Biomedicine." Molecules, vol. 27, no. 9, 2022.
[16] Hu, Ankang et al. "Wearable Sensors Adapted to Extreme Environments Based on the Robust Ionogel Electrolytes with Dual Hydrogen Networks." ACS Applied Materials & Interfaces, vol. 14, no. 10, 2022, pp. 12713-21.
[17] Zhao, X. et al. "Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering." Advanced Healthcare Materials, vol. 5, no. 1, 2016, pp. 108-18.
[18] Abaee, A., M. Mohammadian, and S.M. Jafari, "Whey and Soy Protein-Based Hydrogels and Nano-Hydrogels as Bioactive Delivery Systems." Trends in Food Science & Technology, vol. 70, 2017, pp. 69-81.
[19] Zhang, Miao and Xia Zhao. "Alginate Hydrogel Dressings for Advanced Wound Management." International Journal of Biological Macromolecules, vol. 162, 2020, pp. 1414-28.
[20] Koev, Todor T. et al. "Starch Hydrogels as Targeted Colonic Drug Delivery Vehicles." Carbohydrate Polymers, vol. 289, 2022, p. 119413.
[21] Li, G. et al. "A Stretchable and Adhesive Ionic Conductor Based on Polyacrylic Acid and Deep Eutectic Solvents." Npj Flexible Electronics, vol. 5, no. 1, 2021.
[22] Jin, Qiuyi et al. "Self-Adhesive, Antifreezing, and High Resilience Biobased Ionogel as a Flexible Strain–Temperature Bimodal Sensor." ACS Applied Polymer Materials, vol. 6, no. 8, 2024, pp. 4798-807.
[23] Vioux, André et al. "Use of Ionic Liquids in Sol-Gel; Ionogels and Applications." Comptes Rendus Chimie, vol. 13, no. 1, 2010, pp. 242-55.
[24] Zhang, Q. H. et al. "Deep Eutectic Solvents: Syntheses, Properties and Applications." Chemical Society Reviews, vol. 41, no. 21, 2012, pp. 7108-46.
[25] Smith, Emma L. et al. "Deep Eutectic Solvents (Dess) and Their Applications." Chemical Reviews, vol. 114, no. 21, 2014, pp. 11060-82.
[26] Hansen, B.B., et al., "Deep Eutectic Solvents: A Review of Fundamentals and Applications." Chemical Reviews, vol. 121, no. 3, 2021, pp. 1232-85.
[27] Joos, Bjorn et al. "Polymeric Backbone Eutectogels as a New Generation of Hybrid Solid-State Electrolytes." Chemistry of Materials, vol. 32, no. 9, 2020, pp. 3783-93.
[28] Depoorter, J., et al., "Fully Biosourced Materials from Combination of Choline Chloride-Based Deep Eutectic Solvents and Guar Gum." ACS Sustainable Chemistry & Engineering, vol. 7, no. 19, 2019, pp. 16747-56.
[29] Mokhtarpour, Masumeh et al. "Design and Characterization of Ascorbic Acid Based Therapeutic Deep Eutectic Solvent as a New Ion-Gel for Delivery of Sunitinib Malate." Journal of Drug Delivery Science and Technology, vol. 56, 2020, p. 101512.
[30] Wu, L. L. et al. "Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor." Journal of Electronic Materials, vol. 51, no. 9, 2022, pp. 5074-86.
[31] Wang, Yan et al. "Deep Eutectic Solvent-Induced Microphase Separation and Entanglement of Pva Chains for Tough and Reprocessable Eutectogels for Sensors." Langmuir, vol. 38, no. 40, 2022, pp. 12189-97.
[32] Wang, L. et al. "The Antimicrobial Activity of Silver Nanoparticles Biocomposite Films Depends on the Silver Ions Release Behaviour." Food Chemistry, vol. 359, 2021.
[33] Hassan, C. M. and N. A. Peppas. "Structure and Applications of Poly(Vinyl Alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods." Biopolymers/Pva Hydrogels/Anionic Polymerisation Nanocomposites, vol. 153, 2000, pp. 37-65. Advances in Polymer Science.
[34] Mano, Francisca et al. "Production of Poly(Vinyl Alcohol) (Pva) Fibers with Encapsulated Natural Deep Eutectic Solvent (Nades) Using Electrospinning." ACS Sustainable Chemistry & Engineering, vol. 3, no. 10, 2015, pp. 2504-09.
[35] Wang, Yan et al. "A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation." ACS Applied Materials & Interfaces, vol. 13, no. 45, 2021, pp. 54409-16.
[36] Zhang, H. et al. "Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Non-Covalent Interactions." Advanced Functional Materials, vol. 32, no. 41, 2022.
[37] Wang, Jiake et al. "Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(Vinyl Alcohol)." ACS Applied Polymer Materials, vol. 4, no. 3, 2022, pp. 2057-64.
[38] Su, Xing et al. "Rapid and Controllable Preparation of Multifunctional Lignin-Based Eutectogels for the Design of High-Performance Flexible Sensors." ACS Applied Materials & Interfaces, vol. 15, no. 38, 2023, pp. 45526-35.
[39] Chen, T., et al., "Poly(Vinyl Alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability." ACS Applied Polymer Materials, vol. 4, no. 5, 2022, pp. 3982-93.
[40] Thompson, A. and B. Rocky, Characterization of the crystallographic properties of bamboo plants, natural and viscose fibers by X-ray diffraction method. Journal of the Textile Institute, vol. 112, no. 8, 2020, pp. 1295-303.
[41] Wibowo, E.S. and B.D. Park, Determination of Crystallinity of Thermosetting Urea-Formaldehyde Resins Using Deconvolution Method. Macromolecular Research, vol. 28, no. 6, 2020, pp. 615-24.
[42] Briscoe, B., P. Luckham, and S. Zhu, "The Effects of Hydrogen Bonding Upon the Viscosity of Aqueous Poly(Vinyl Alcohol) Solutions." Polymer, vol. 41, no. 10, 2000, pp. 3851-60.
[43] Perego, G. et al. "Effect of Molecular Weight and Crystallinity on Poly(Lactic Acid) Mechanical Properties." Journal of Applied Polymer Science, vol. 59, no. 1, 1996, pp. 37-43.
[44] Zha, Xiang-Jun et al. "Nanofibrillar Poly(Vinyl Alcohol) Ionic Organohydrogels for Smart Contact Lens and Human-Interactive Sensing." ACS Applied Materials & Interfaces, vol. 12, no. 20, 2020, pp. 23514-22.
[45] Gupta, S., et al., "Composition Dependent Structural Modulations in Transparent Poly(Vinyl Alcohol) Hydrogels." Colloids and Surfaces B-Biointerfaces, vol. 74, no. 1, 2009, pp. 186-90.
[46] Wang, Shun-Cheng and Heng-Kwong Tsao. "Ion Migration through a Polymer Solution:  Microviscosity." Macromolecules, vol. 36, no. 24, 2003, pp. 9128-34.
[47] Chang, F.M. and H.K. Tsao, "Drag Reduction in Electro-Osmosis of Polymer Solutions." Applied Physics Letters, vol. 90, no. 19, 2007.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2024-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明