參考文獻 |
1. Grölz, D., et al., Liquid biopsy preservation solutions for standardized pre-analytical workflows—venous whole blood and plasma. Current pathobiology reports, 2018. 6: p. 275-286.
2. Salvi, S., et al., The potential use of urine cell free DNA as a marker for cancer. Expert Review of Molecular Diagnostics, 2016. 16(12): p. 1283-1290.
3. Jain, S., et al., Urine-based liquid biopsy for nonurological cancers. Genetic Testing and Molecular Biomarkers, 2019. 23(4): p. 277-283.
4. Aro, K., et al., Saliva liquid biopsy for point-of-care applications. Frontiers in public health, 2017. 5: p. 77.
5. Sindeeva, O.A., et al., New frontiers in diagnosis and therapy of circulating tumor markers in cerebrospinal fluid in vitro and in vivo. Cells, 2019. 8(10): p. 1195.
6. Rolfo, C., et al., Liquid biopsy for advanced NSCLC: a consensus statement from the international association for the study of lung cancer. Journal of Thoracic Oncology, 2021. 16(10): p. 1647-1662.
7. Bica-Pop, C., et al., Overview upon miR-21 in lung cancer: focus on NSCLC. Cellular and Molecular Life Sciences, 2018. 75: p. 3539-3551.
8. Duque-Ossa, L., B. García-Ferrera, and J. Reyes-Retana, Troponin I as a biomarker for early detection of acute myocardial infarction. Current Problems in Cardiology, 2021: p. 101067.
9. Mingels, A.M., et al., Cardiac troponin T: smaller molecules in patients with end-stage renal disease than after onset of acute myocardial infarction. Clinical chemistry, 2017. 63(3): p. 683-690.
10. Dahm, R., Friedrich Miescher and the discovery of DNA. Developmental biology, 2005. 278(2): p. 274-288.
11. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-738.
12. Waters, J.T., et al., Transitions of double-stranded DNA between the A-and B-forms. The Journal of Physical Chemistry B, 2016. 120(33): p. 8449-8456.
13. Peck, L.J. and J.C. Wang, Energetics of B-to-Z transition in DNA. Proceedings of the National Academy of Sciences, 1983. 80(20): p. 6206-6210.
14. Palecek, E., Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol, 1991. 26(2): p. 151-226.
15. Drew, H., et al., High-salt d (CpGpCpG), a left-handed Z′ DNA double helix. Nature, 1980. 286(5773): p. 567-573.
16. Higgs, P.G., RNA secondary structure: physical and computational aspects. Quarterly reviews of biophysics, 2000. 33(3): p. 199-253.
17. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 2004. 116(2): p. 281-297.
18. Olsen, P.H. and V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Developmental biology, 1999. 216(2): p. 671-680.
19. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. nature, 2000. 403(6772): p. 901-906.
20. Vella, M.C. and F.J. Slack, C. elegans microRNAs. WormBook: The Online Review of C. elegans Biology [Internet], 2005.
21. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer research, 2004. 64(11): p. 3753-3756.
22. Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. The EMBO journal, 2002. 21(17): p. 4663-4670.
23. Ketting, R.F., et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & development, 2001. 15(20): p. 2654-2659.
24. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews genetics, 2004. 5(7): p. 522-531.
25. Si, W., et al., The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical epigenetics, 2019. 11(1): p. 1-24.
26. Botes, M., M. de Kwaadsteniet, and T.E. Cloete, Application of quantitative PCR for the detection of microorganisms in water. Analytical and bioanalytical chemistry, 2013. 405: p. 91-108.
27. Koscianska, E., et al., Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC molecular biology, 2011. 12: p. 1-7.
28. Campbell, C.T. and G. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 2007. 28(15): p. 2380-2392.
29. Bardeen, J. and W.H. Brattain, The transistor, a semi-conductor triode. Physical Review, 1948. 74(2): p. 230.
30. Lee, C.-S., S.K. Kim, and M. Kim, Ion-sensitive field-effect transistor for biological sensing. Sensors, 2009. 9(9): p. 7111-7131.
31. Li, H., et al., Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. Sensors, 2023. 23(15): p. 6808.
32. Gao, A., et al., Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano letters, 2011. 11(9): p. 3974-3978.
33. Chiang, P.L., et al., Nanowire transistor‐based ultrasensitive virus detection with reversible surface functionalization. Chemistry–An Asian Journal, 2012. 7(9): p. 2073-2079.
34. Knoll, W., et al., Functional tethered lipid bilayers. Reviews in Molecular Biotechnology, 2000. 74(3): p. 137-158.
35. Chang, R., et al., Water near bioinert self-assembled monolayers. Polymer Journal, 2018. 50(8): p. 563-571.
36. Lecot, S., et al., Arrangement of monofunctional silane molecules on silica surfaces: influence of alkyl chain length, head-group charge, and surface coverage, from molecular dynamics simulations, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The Journal of Physical Chemistry C, 2020. 124(37): p. 20125-20134.
37. Kind, M. and C. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
38. Capecchi, G., et al., Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates, 2007. 33: p. 269-284.
39. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
40. Wang, G.M., W.C. Sandberg, and S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
41. Anderson, D. and M. Moskovits, A SERS-active system based on silver nanoparticles tethered to a deposited silver film. The Journal of Physical Chemistry B, 2006. 110(28): p. 13722-13727.
42. Zürcher, S., et al., Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. Journal of the American Chemical Society, 2006. 128(4): p. 1064-1065.
43. Bath, B.D., et al., Dopamine adsorption at surface modified carbon-fiber electrodes. Langmuir, 2001. 17(22): p. 7032-7039.
44. Huang, C.-J., Advanced surface modification technologies for biosensors, in Chemical, gas, and biosensors for internet of things and related applications. 2019, Elsevier. p. 65-86.
45. Ratner, B.D., New ideas in biomaterials science—a path to engineered biomaterials. Journal of biomedical materials research, 1993. 27(7): p. 837-850.
46. Carrara, S., et al., New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors. Biosensors and Bioelectronics, 2009. 24(12): p. 3425-3429.
47. Carrara, S., et al., Capacitance DNA bio-chips improved by new probe immobilization strategies. Microelectronics Journal, 2010. 41(11): p. 711-717.
48. Vu, C.-A., et al., Improved biomarker quantification of silicon nanowire field-effect transistor immunosensors with signal enhancement by RNA aptamer: Amyloid beta as a case study. Sensors and Actuators B: Chemical, 2021. 329: p. 129150.
49. Huang, C.-J. and Y.-Y. Zheng, Controlled silanization using functional silatrane for thin and homogeneous antifouling coatings. Langmuir, 2018. 35(5): p. 1662-1671.
50. Tseng, Y.-T., et al., Facile functionalization of polymer surfaces in aqueous and polar organic solvents via 3-mercaptopropylsilatrane. ACS applied materials & interfaces, 2016. 8(49): p. 34159-34169.
51. Lee, T.-J., L.-K. Chau, and C.-J. Huang, Controlled Silanization: High Molecular Regularity of Functional Thiol Groups on Siloxane Coatings. Langmuir, 2020. 36(21): p. 5935-5943.
52. Xiao, Z., et al., Effect of glutaraldehyde on water related properties of solid wood. 2010.
53. Khademi, M. and D.P. Barz, Structure of the electrical double layer revisited: Electrode capacitance in aqueous solutions. Langmuir, 2020. 36(16): p. 4250-4260.
54. Wang, H. and L. Pilon, Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances. Electrochimica Acta, 2012. 64: p. 130-139.
55. Xu, X., et al., Estimating detection limits of potentiometric DNA sensors using surface plasmon resonance analyses. ACS sensors, 2019. 5(1): p. 217-224.
56. Wei, F., et al., Monitoring DNA hybridization on alkyl modified silicon surface through capacitance measurement. Biosensors and Bioelectronics, 2003. 18(9): p. 1157-1163.
57. Parizi, K.B., et al., ISFET pH sensitivity: counter-ions play a key role. Scientific reports, 2017. 7(1): p. 41305.
58. Mehne, J., et al., Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Analytical and bioanalytical chemistry, 2008. 391: p. 1783-1791.
59. Luo, Y.-R. and J.A. Kerr, Bond dissociation energies. CRC handbook of chemistry and physics, 2012. 89(89): p. 65-98.
60. Issa, A.A. and A.S. Luyt, Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers, 2019. 11(3): p. 537.
61. P Chiriac, A., et al., Sol gel method performed for biomedical products implementation. Mini reviews in medicinal chemistry, 2010. 10(11): p. 990-1013.
62. Li, J., R. Peng, and D. Li, Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels. Analytica Chimica Acta, 2019. 1059: p. 68-79.
63. Zhou, J.C., et al., Immobilization-mediated reduction in melting temperatures of DNA–DNA and DNA–RNA hybrids: Immobilized DNA probe hybridization studied by SPR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 481: p. 72-79 |