參考文獻 |
1. Alias, N., et al., 15 - Metal oxide for heavy metal detection and removal, in Metal Oxide Powder Technologies, Y. Al-Douri, Editor. 2020, Elsevier. p. 299-332.
2. Borrill, A.J., N.E. Reily, and J.V. Macpherson, Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst, 2019. 144(23): p. 6834-6849.
3. Gumpu, M.B., et al., A review on detection of heavy metal ions in water – An electrochemical approach. Sensors and Actuators B: Chemical, 2015. 213: p. 515-533.
4. Hagiwara, T., et al., Study on cone-defects during the pattern fabrication process with Silicon Nitride. Journal of photopolymer science and technology, 2015. 28(1): p. 17-24.
5. Baltpurvins, K.A., et al., Effect of pH and Anion Type on the Aging of Freshly Precipitated Iron(III) Hydroxide Sludges. Environmental Science & Technology, 1996. 30(3): p. 939-944.
6. Krehula, S. and S. Musić, Formation of iron oxides in a highly alkaline medium in the presence of palladium ions. Journal of Molecular Structure, 2009. 924-926: p. 201-207.
7. Silva, M.F., et al., Nanometric particle size and phase controlled synthesis and characterization of γ-Fe2O3 or (α + γ)-Fe2O3 by a modified sol-gel method. Journal of Applied Physics, 2013. 114(10).
8. Hung, D.Q., O. Nekrassova, and R.G. Compton, Analytical methods for inorganic arsenic in water: a review. Talanta, 2004. 64(2): p. 269-277.
9. Kos, V., et al., Determination of heavy metal concentrations in plants exposed to different degrees of pollution using ICP-AES. Fresenius′ Journal of Analytical Chemistry, 1996. 354(5): p. 648-652.
10. Zarazua, G., et al., Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006. 61(10): p. 1180-1184.
11. Bandodkar, A.J. and J. Wang, Non-invasive wearable electrochemical sensors: a review. Trends in biotechnology, 2014. 32(7): p. 363-371.
12. Gao, W., et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016. 529(7587): p. 509-514.
13. Kim, S., et al., Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences, 2020. 117(45): p. 27906-27915.
14. Sekine, Y., et al., A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab on a Chip, 2018. 18(15): p. 2178-2186.
15. Yang, Y., et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nature biotechnology, 2020. 38(2): p. 217-224.
16. Yoon, S., et al., A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angewandte Chemie, 2007. 119(35): p. 6778-6781.
17. Yang, Y., et al., Problems analysis and new fabrication strategies of mediated electrochemical biosensors for wastewater toxicity assessment. Biosensors and Bioelectronics, 2018. 108: p. 82-88.
18. Bardeen, J. and W.H. Brattain, The Transistor, A Semi-Conductor Triode. Physical Review, 1948. 74(2): p. 230-231.
19. Atalla, M.M., E. Tannenbaum, and E.J. Scheibner, Stabilization of Silicon Surfaces by Thermally Grown Oxides*. Bell System Technical Journal, 1959. 38(3): p. 749-783.
20. Lee, C.-S., S.K. Kim, and M. Kim Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors, 2009. 9, 7111-7131 DOI: 10.3390/s90907111.
21. Paghi, A., S. Mariani, and G. Barillaro, 1D and 2D Field Effect Transistors in Gas Sensing: A Comprehensive Review. Small, 2023. 19(15): p. 2206100.
22. Cho, S.-K. and W.-J. Cho Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor. Sensors, 2021. 21, DOI: 10.3390/s21124213.
23. Khan, M., et al., Vertically Oriented Zinc Oxide Nanorod-Based Electrolyte-Gated Field-Effect Transistor for High-Performance Glucose Sensing. Analytical Chemistry, 2022. 94(25): p. 8867-8873.
24. Woo, J.-M., et al., Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method. Lab on a Chip, 2013. 13(18): p. 3755-3763.
25. Wu, C.-R., et al., Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors. Sensors and Actuators B: Chemical, 2021. 334: p. 129567.
26. Mishra, A.K., et al., CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications. IEEE Sensors Journal, 2020. 20(9): p. 5039-5047.
27. Sarangadharan, I., et al., Single Drop Whole Blood Diagnostics: Portable Biomedical Sensor for Cardiac Troponin I Detection. Analytical Chemistry, 2018. 90(4): p. 2867-2874.
28. Pan, T.-M., et al., Rapid and label-free detection of the troponin in human serum by a TiN-based extended-gate field-effect transistor biosensor. Biosensors and Bioelectronics, 2022. 201: p. 113977.
29. Islam, S., et al., A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosensors and Bioelectronics, 2019. 126: p. 792-799.
30. Bandaru, P.R. and P. Pichanusakorn, An outline of the synthesis and properties of silicon nanowires. Semiconductor Science and Technology, 2010. 25(2): p. 024003.
31. Zheng, G., X.P.A. Gao, and C.M. Lieber, Frequency Domain Detection of Biomolecules Using Silicon Nanowire Biosensors. Nano Letters, 2010. 10(8): p. 3179-3183.
32. Bergveld, P., Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Transactions on Biomedical Engineering, 1970. BME-17(1): p. 70-71.
33. Duc, T.N., et al., Label free femtomolar electrical detection of Fe (iii) ions with a pyridinone modified lipid monolayer as the active sensing layer. Journal of Materials Chemistry B, 2013. 1(4): p. 443-446.
34. Chaves, S., et al., Hydroxy(thio)pyrone and hydroxy(thio)pyridinone iron chelators: Physico-chemical properties and anti-oxidant activity. Journal of Inorganic Biochemistry, 2012. 114: p. 38-46.
35. Nguyen, T.D., et al., A field effect transistor biosensor with a γ-pyrone derivative engineered lipid-sensing layer for ultrasensitive Fe3+ ion detection with low pH interference. Biosensors and Bioelectronics, 2014. 54: p. 571-577.
36. Kenaan, A., et al., Femtomolar detection of Cu2+ ions in solution using super-Nernstian FET-sensor with a lipid monolayer as top-gate dielectric. Sensors and Actuators B: Chemical, 2020. 316: p. 128147.
37. Wu, T., et al., Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors. ACS Nano, 2017. 11(7): p. 7142-7147.
38. Spijkman, M., et al., Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors. Applied Physics Letters, 2011. 98(4): p. 043502.
39. Spijkman, M.-J., et al., Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution. Advanced Functional Materials, 2010. 20(6): p. 898-905.
40. Jang, H.-J. and W.-J. Cho, Performance Enhancement of Capacitive-Coupling Dual-gate Ion-Sensitive Field-Effect Transistor in Ultra-Thin-Body. Scientific Reports, 2014. 4(1): p. 5284.
41. Jin, Y., et al., Ultra-sensitive and selective detection of mercury ion (Hg2+) using free-standing silicon nanowire sensors. Nanotechnology, 2018. 29(13): p. 135501.
42. Huang, Z., et al., Gold nanoparticle modified silicon nanowire array based sensor for low-cost, high sensitivity and selectivity detection of mercury ions. Materials Research Express, 2020. 7(3): p. 035017.
43. Chen, Y. and M. Hamidullah. High Sensitive Detection of Ag + Ions in Aqueous Solution Using Silicon Nanowires and Silver-Specific Oligonucleotide. in The 15th International Conference on Biomedical Engineering. 2014. Cham: Springer International Publishing.
44. Sun, K., et al., Effect of subthreshold slope on the sensitivity of nanoribbon sensors. Nanotechnology, 2016. 27(28): p. 285501.
45. Zeimpekis, I., et al., Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins. Nanotechnology, 2016. 27(16): p. 165502.
46. Chang, H.-K., et al., Top-down fabricated polysilicon nanoribbon biosensor chips for cancer diagnosis. MRS Online Proceedings Library (OPL), 2013. 1569: p. 213-218.
47. Synhaivska, O., et al. Detection of Cu2+ Ions with GGH Peptide Realized with Si-Nanoribbon ISFET. Sensors, 2019. 19, DOI: 10.3390/s19184022.
48. Le Borgne, B., et al., Covalent functionalization of polycrystalline silicon nanoribbons applied to Pb(II) electrical detection. Sensors and Actuators B: Chemical, 2018. 268: p. 368-375.
49. Rush, M.N., K.E. Coombs, and E.L. Hedberg-Dirk, Surface chemistry regulates valvular interstitial cell differentiation in vitro. Acta Biomaterialia, 2015. 28: p. 76-85.
50. Howarter, J.A. and J.P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane. Langmuir, 2006. 22(26): p. 11142-11147.
51. Singh, M., N. Kaur, and E. Comini, The role of self-assembled monolayers in electronic devices. Journal of Materials Chemistry C, 2020. 8(12): p. 3938-3955.
52. Bag, M.A. and L.M. Valenzuela, Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. International Journal of Molecular Sciences, 2017. 18(8): p. 1422.
53. Li, K., et al., Microstructure and Properties of Poly(ethylene glycol)-Segmented Polyurethane Antifouling Coatings after Immersion in Seawater. Polymers, 2021. 13(4): p. 573.
54. Li, W., et al., Polyethylene glycol modified magnetic nanoparticles for removal of heavy metal ions from aqueous solutions. Journal of Dispersion Science and Technology, 2019. 40(9): p. 1338-1344.
55. 洪世勳, 李亮三, and 陳文逸, 熱力學分析聚乙二醇在水合程序中結構變化 / 洪世勳撰. 2008, 撰者]: 桃園縣中壢市.
56. 科儀新知 = Instruments today. 科儀新知 = Instruments today., 1984.
57. Nasiruddin, M., et al., Solvation Effects on the Electrical Properties of a Microfluid-Assisted Solution Field-Effect Transistor with Atomically Thin MoS2 Layers. ACS Applied Nano Materials, 2023. 6(16): p. 15175-15182.
58. Malmberg, C. and A. Maryott, Dielectric Constant of Water from 00 to 1000 C. Journal of research of the National Bureau of Standards, 1956. 56(1): p. 1-8.
59. Akerlof, G., Dielectric constants of some organic solvent-water mixtures at various temperatures. Journal of the American Chemical Society, 1932. 54(11): p. 4125-4139.
60. Hung, H.-Y., et al., Analysis of metal ion impurities in liquid crystals using high resolution inductively coupled plasma mass spectrometry. Analytical Methods, 2012. 4(11): p. 3631-3637.
61. 楊詠淇 and 陳文逸, 場效應電晶體使用不同閘極與聚乙二醇改質對於不同鹽濃度緩衝液影響pH量測之研究 / 楊詠淇著. 2023, 撰者: 桃園市中壢區.
62. Li, J., The Mechanics and Physics of Defect Nucleation. MRS Bulletin, 2007. 32(2): p. 151-159.
63. Kaisti, M., Detection principles of biological and chemical FET sensors. Biosensors and Bioelectronics, 2017. 98: p. 437-448.
64. Vançan, S., E.A. Miranda, and S.M.A. Bueno, IMAC of human IgG: studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems. Process Biochemistry, 2002. 37(6): p. 573-579.
65. Alberti, G., et al. Deferoxamine-Based Materials and Sensors for Fe(III) Detection. Chemosensors, 2022. 10, DOI: 10.3390/chemosensors10110468.
66. Cennamo, N., et al., A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III). Sensors, 2014. 14(3): p. 4657-4671. |