博碩士論文 111223019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.149.4.109
姓名 蘇亭瑜(Su, Ting-Yu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 吩噻嗪 (PTz) 衍生物與噻吩吡嗪 (TP) 衍生物之電洞傳輸層與電子傳輸層材料開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 本研究主要致力於開發有機小分子之自組裝單層材料 (self-assembled monolayers, SAM),作為電洞傳輸層及電子傳輸層應用於鈣鈦礦太陽能電池中,並以不同核心及錨定基團 (anchoring group) 之數量分為三大系列。
第一系列以吩噻嗪 (phenothiazine, PTz) 作為核心,於碳鏈之末端接上錨定基團—磷酸基團 (phosphonic acid, PA),首先更改鏈長以進行比較,製備出含有乙基的PTzPA-2 (1) 與含有丁基的PTzPA-4 (2)。之後於PTzPA-4 (2) 之環上進行官能基化,接上溴 (bromo)、硝基 (nitro)、甲氧基 (methoxy),成功製備PTzBrPA (3)、PTzNO2PA (4) 及PTzOMePA (5),以進行比較。此系列作為電洞傳輸層並應用於錫鈣鈦礦太陽能電池,目前PTzPA-2 (1)、PTzPA-4 (2) 及 PTzBrPA (3) 已進行初步元件測試,其中以PTzBrPA (3) 具有最好的7.4%效能,期待後續可以進一步優化。
第二系列則是以噻吩吡嗪 (thienopyrazine, TP) 作為核心,於一端接上三苯胺 (triphenylamine, TPA),並將另一端接上錨定基團:丙二腈 (malononitrile, MN)、氰乙酸乙烯基 (cyanoacetic acid, CA)、氰磷酸二乙酯乙烯基 (diethyl cyanomethylphosphonate, PE) 以及氰磷酸乙烯基 ((cyanomethyl)phosphonic acid, PA),成功製備TP-MN (6)、TP-CA (7)、TP-PE (8) 及TP-PA (9),進行元件效能之比較。此系列作為電洞傳輸層並應用於錫鈣鈦礦太陽能電池。目前TP-MN (6) 之光電轉換效率高達7.7%,期待後續可以進一步優化。
第三系列同樣以噻吩吡嗪 (TP) 作為核心,但有別於第二系列,是以噻吩 (thiophene) 作為π-spacer,並於兩個末端都接上錨定基團:丙二腈 (MN)、氰乙酸乙烯基 (CA) 及氰磷酸二乙酯乙烯基 (PE),成功製備DCV-DTTP (10)、DCA-DTTP (11) 及DPE-DTTP (12)。此系列作為電子傳輸層並應用於鉛鈣鈦礦太陽能電池,目前正在進行元件測試。
以上三個系列之新材料,皆已完成NMR與質譜之結構鑑定,也利用UV-vis與DPV鑑定光學及電化學性質,測得HOMO、LUMO以及Eg等數據,並藉由TGA及DSC檢測這些材料之熱穩定性,以及透過SXRD進行單晶結構之解析。這些新材料之元件測試正在進行中,期望藉由官能基之改變,得到優異之光電轉換效率。
摘要(英) This thesis focuses on the development of self-assembled monolayers (SAM) of organic small molecules, which can be used as hole transport material (HTM) or electron transport material (ETM) in perovskite solar cells (PSCs). In this context, three series of SAMs are synthesized based on different cores and various anchoring groups.
The first series utilized phenothiazine (PTz) as the core, with phosphonic acid (PA) as the anchoring group attached to one end of the N-alkyl chain. To compare the performance of different chain lengths, PTzPA-2 (1) with an ethyl group and PTzPA-4 (2) with a butyl group were successfully synthesized. After functionalizing PTzPA-4 (2) with bromo, nitro, and methoxy groups, three additional SAMs were successfully synthesized for comparison: PTzBrPA (3), PTzNO2PA (4) and PTzOMePA (5). These SAM-based HTMs were utilized in tin-based PSCs. Initial testing of PTzPA-2 (1), PTzPA-4 (2) and PTzBrPA (3) showed promising results, with PTzBrPA (3) achieving a good power conversion efficiency (PCE) of 7.4%.
The second series used thienopyrazine (TP) as the core. The TP core was functionalized with a triphenylamine (TPA) on one end, and various anchoring groups were attached at the other end, such as malononitrile (MN), cyanoacetic acid (CA), diethyl cyanomethylphosphonate (PE), and (cyanomethyl)phosphonic acid (PA). Four SAMs were successfully synthesized to compare device performance, named TP-MN (6), TP-CA (7), TP-PE (8) and TP-PA (9). These SAM-based HTMs were utilized in tin-based PSCs. Among these, TP-MN (6) achieved a high PCE of 7.7%.
The third series also utilized thienopyrazine (TP) as the core, with thiophene as the π-spacer. Both ends were attached with various anchoring groups, such as malononitrile (MN), cyanoacetic acid (CA) and diethyl cyanomethylphosphonate (PE). Three SAMs were successfully synthesized for comparison: DCV-DTTP (10), DCA-DTTP (11), and DPE-DTTP (12). These SAM-based ETMs were utilized in lead-based PSCs. Currently, the device performance of this series is under evaluation.
The structural identification of all three series of new materials was characterized by NMR spectroscopy and mass spectrometry. To study the optical and electrochemical properties (such as HOMO, LUMO, and Eg), UV-Vis and DPV measurements were carried out. Thermal stability tests were conducted using TGA and DSC. Single crystal structure analysis was performed through SXRD. Device testing of these new materials is currently in progress, and we expect that excellent power conversion efficiencies can be obtained through end group functionalization.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸層
★ 電子傳輸層
★ 自組裝單層材料
★ 吩噻嗪
★ 噻吩吡嗪
關鍵字(英) ★ Perovskite solar cells
★ Hole-transporting layer
★ Electron-transporting layer
★ Self-assembled monolayers
★ Phenothiazine
★ Thienopyrazine
論文目次 摘要 vi
Abstract viii
謝誌 x
目錄 xi
List of Figures xv
List of Schemes xvii
List of Tables xviii
附錄 xix
第一章 緒論 1
1-1 前言 2
1-2 太陽能電池概論 3
1-2-1 矽晶太陽能電池 4
1-2-2 無機化合物半導體太陽能電池 5
1-2-3 混合式薄膜太陽能電池 6
1-3 鈣鈦礦太陽能電池 7
1-3-1 鈣鈦礦太陽能電池之元件組成 7
1-3-2 鈣鈦礦太陽能電池之基本架構 9
1-3-3 鈣鈦礦太陽能電池之元件工作原理 11
1-3-4 鈣鈦礦太陽能電池之電子傳輸層材料 11
1-3-5 鈣鈦礦太陽能電池之電洞傳輸層材料 17
1-3-6 鈣鈦礦太陽能電池之自組裝單層 24
1-4 太陽能電池之元件參數介紹 29
1-4-1 J - V曲線 30
1-4-2 開路電壓 (Open circuit voltage, VOC) 31
1-4-3 短路電流密度 (Short circuit current density, JSC) 31
1-4-4 外部量子效率 (External quantum efficiency, EQE) 31
1-4-5 填充因子 (Fill factor;FF) 32
1-4-6 光電轉換效率(Power conversion efficiency, η, PCE) 32
1-5 研究動機 33
1-5-1 PTz系列 33
1-5-2 TP系列 35
1-5-3 DTTP系列 40
第二章 實驗部分 43
2-1 化合物名稱對照 44
2-2 實驗藥品 47
2-2-1 實驗所用之化學藥品 47
2-2-2 實驗所用之溶劑除水方式 49
2-3 實驗儀器 50
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) ; Bruker AVANCE 300 / 500 MHz 50
2-3-2 高解析質譜儀 (High Resolution Mass Spectrometer, HRMS);(1) ATS-00670, Bruker, New ultrafleXtreme TM, (2) JMS-700 HRMS 51
2-3-3 紫外光/可見光吸收光譜 (Ultraviolet / Visible Spectro-Photometer);HITACHI U-3900、U-4100型 51
2-3-4 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C 52
2-3-5 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 52
2-3-6 熱重分析儀 (Thermal Gravimetric Analyzer, TGA);TGA 55 52
2-3-7 X光單晶繞射儀 (Single Crystal X-Ray Diffractometer, SXRD);Rigaku XtaLAB Synergy DW 53
2-4 合成步驟 54
2-4-1 PTz系列 54
2-4-1-1 (2-(10H-phenothiazin-10-yl)ethyl)phosphonic acid (PTzPA-2, 1) 之合成步驟 54
2-4-1-2 (4-(10H-phenothiazin-10-yl)butyl)phosphonic acid (PTzPA-4, 2) 之合成步驟 56
2-4-1-3 (4-(3,7-dibromo-10H-phenothiazin-10-yl)butyl)phosphonic acid (PTzBrPA, 3) 之合成步驟 58
2-4-1-4 Diethyl (4-bromobutyl)phosphonate (19) 之合成步驟 61
2-4-1-5 (4-(3,7-dinitro-10H-phenothiazin-10-yl)butyl)phosphonic acid (PTzNO2PA, 4) 之合成步驟 62
2-4-1-6 (4-(3,7-dimethoxy-10H-phenothiazin-10-yl)butyl)phosphonic acid (PTzOMePA, 5) 之合成步驟 64
2-4-2 TP系列 69
2-4-2-1 Thiophene-3,4-diamine (29) 之合成步驟 69
2-4-2-3 2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]-pyrazine (TP, 32) 之合成步驟 71
2-4-2-4 7-bromo-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5-carbaldehyde (Br-TP-CHO, 34) 之合成步驟 72
2-4-2-5 4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl)phenyl)aniline (TPA-SnBu3, 36) 之合成步驟 73
2-4-2-6 7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5-carbaldehyde (TPA-TP-CHO, 37)之合成步驟 74
2-4-2-7 2-((7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)methylene)malononitrile (TP-MN, 6) 之合成步驟 75
2-4-2-8 3-(7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)-2-cyanoacrylic acid (TP-CA, 7) 之合成步驟 76
2-4-2-9 diethyl (E)-(2-(7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)-1-cyanovinyl)phosphonate (TP-PE, 8) 之合成步驟 77
2-4-2-10 (2-(7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)-1-cyanovinyl)phosphonic acid (TP-PA, 9) 之合成步驟 78
2-4-3 DTTP系列 80
2-4-3-1 5,7-dibromo-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine (diBr-TP, 38) 之合成步驟 80
2-4-3-2 5-(1,3-dioxolan-2-yl)thiophen-2-yl)tributylstannane (40) 之合成步驟 81
2-4-3-3 5,5′-(2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5,7-diyl)bis(thiophene-2-carbaldehyde) (DTTP-diCHO, 42) 之合成步驟 82
2-4-3-4 2,2′-(((2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5,7-diyl)bis(thiophene-5,2-diyl))bis(methaneylylidene))dimalononitrile (DCV-DTTP, 10) 之合成步驟 83
2-4-3-5 (2,2′)-3,3′-((2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5,7-diyl)bis(thiophene-5,2-diyl))bis(2-cyanoacrylic acid) (DCA-DTTP, 11) 之合成步驟 84
2-4-3-6 diethyl ((E)-1-cyano-2-(5-(7-(5-((E)-2-cyano-2-(diethoxyphosphoryl)vinyl)thiophen-2-yl)-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)thiophen-2-yl)vinyl)phosphonate (DPE-DTTP, 12) 之合成步驟 84
第三章 結果與討論 87
3-1 實驗條件之優化 88
3-1-1 PTzNO2PA之優化 88
3-1-2 PTzOMe (23)之優化 90
3-1-3 TP-PE (8) 之優化 92
3-2 TP-MN之晶體討論 93
3-3 有機光電材料之光學性質探討 95
3-3-1 PTz系列 95
3-3-2 TP系列 96
3-3-3 DTTP系列 98
3-4 有機光電材料之電化學性質探討 99
3-4-1 PTz系列 99
3-4-2 TP系列 101
3-4-3 DTTP系列 103
3-5 有機光電材料之熱穩定性分析 105
3-5-1 PTz系列 105
3-5-2 TP系列 106
3-5-3 DTTP系列 107
第四章 結論 109
附錄 111
參考資料 171
參考文獻 https://www.nrel.gov/pv/cell-efficiency.html (2024)
Edmiston, S.-A.; Sproul, A.-B.; Green, M.-A.; Wenham, S. R. Progress in Photovoltaics: Research and Applications, 1995, 3, 333-350.
Chapin, D.-M.; Fuller, C.-S.; Pearson, G.-L J. Appl. Phys. 1954, 25, 676-677.
Sun, Y.; Welch, G.-C.; Leong, W.-L.; Takacs, C.-J.; Bazan, G.-C.; Heeger, A.-J. Nature materials 2011, 11, 44-48.
Lin, Y.-Z.; Zhao, F.-W.; He, Q.; Huo, L.-J.; Wu, Y.; Parker, T.-C.; Ma, W.; Sun, Y.-M.; Wang, C.-R.; Zhu, D.-B.; Heeger, A.-J.; Marder, S.-R.; Zhan, X.-W. J. Am. Chem. Soc. 2016, 138, 4955-4961.
(a) https://www.narlabs.org.tw/tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K143524098971028797
(b) A review and analysis of technologies applied in PV modules, School of Electrical and Computer Engineering
(c) https://www.quarktwin.com/blogs/battery/amorphous-silicon-solar-cells-features-structure-and-applications/154
(d) Modeling Graded Band Gap CZT(S, Se) Solar Cells
https://www.pojianyunfu.com/news/1279.html
(a) https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=414
(b) https://medium.com/@dannyjohar9/global-organic-photovoltaics-opv-market-poised-to-reach-724-8-72e14165403d
(c) https://en.wikipedia.org/wiki/Perovskite_solar_cell
https://en.wikipedia.org/wiki/Perovskite_(structure)
Raj, A.; Kumar, M.; Anshul, A. Materials Today Chemistry 2021, 22, 100595.
Wu, Y.-Z.; Yang, X.-D.; Chen, W.; Yue, Y.-F.; Cai, M.-L.; Xie, F.-X.; Bi, E.; Islam, A.-B.; Han, L.-Y. Nature Energy 2016, 1, 1-7.
Jameel, M.-A.; Yang, T.-C.-J.; Wilson, G.-J.; Evans, R.-A.; Gupta, A.; Langford, S.-J. J. Mater. Chem. A 2021, 9, 27170-27192.
Jung, S.-K.; Heo, J.-H.; Oh, B.-M.; Lee, J.-B.; Park, S.-H.; Yoon, W.; Song, Y.; Yun, H.; Kim, J.-H.; Im, S.-H.; Kwon, O-P. Adv. Funct. Mater 2020, 30, 1905951.
Fan, Y.-H.; Wu, F.; Liu, F.; Han, M.-M.; Chang, K.; Zhu, L.-N.; Li, Q.-Q.; Li, Z. J. Mater. Chem. C 2022, 10, 2544-2550.
Hu, Z.; Tang, G.-Q.; Miao, J.-S.; Fu, T.-C.; Li, T.-T.; Tai, Q.-D.; Meng, H.; Yan, F. Adv. Funct. Mater 2020, 30, 2001073.
Chen, C.; Li, H.-P.; Ding, X.-D.; Cheng, M.; Li, H.-A.; Xu, L.; Qiao, F.; Li, H.-M.; Sun, L.-C. ACS Appl. Mater. Interfaces 2018, 10, 38970-38977.
Chen, W.; Shi, Y.-Q.; Wang, Y.; Feng, X.-Y.; Djurišić, A.-B.; Woo, H.-Y.; Guo, X.-G.; He, Z.-B. Nano Energy 2020, 68, 104363.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the american chemical society, 2009, 131, 6050-6051.
Deng, Z.-H.; He, M.-S.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.-H.; Zhang, Z.-F.; Xu, H.; Qiu, Y.-K.; Xie, Z.; Shan, T.; Chen, Z.-H.; Zhong, H.-L.; Chen, C.-C. Chem. Mater. 2020, 33, 285-297.
Wang, Y.-K.; Ma, H.; Chen, Q.-Y.; Sun, Q.; Liu, Z.-X.; Sun, Z.; Jia, X.-G.; Zhu, Y.-Y.; Zhang, S.; Zhang, J.; Yuan, N.-Y.; Ding, J.-N.; Zhou, Y. Song, B.; Li, Y.-F. ACS Appl. Mater. Interfaces 2021, 13, 7705-7713.
Xia, J.-X.; Joseph, V.; Sutanto, A.-A.; Balasaravanan, R.; Ezhumalai, Y.; Zhang, Z.-X.; Ni, J.-S.; Yogesh, S.-T.; Yau, S.-L.; Shao, G.; Qiu, Z.-L.; Asiri, A.-M.; Chen, M.-C.; Nazeeruddin, M.-K. Cell Reports Physical Science 2023, 4.
Yu, X.-Y.; Gao, D.-P.; Li, Z.; Sun, X.-L.; Li, B.; Zhu, Z.-L.; Li, Z. Angew. Chem. Int. Ed. 2023, 62, e202218752.
Wu, T.-H.; Liu, X.; Luo, X.-H.; Lin, X.-S.; Cui, D.-Y.; Wang, Y.-B.; Segawa, H.; Zhang, Y.-Q.; Han, L.-Y. Joule 2021, 5, 863-886.
Ke, W.-J.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe, C. M. M.; Marks, T. J.; Chen, M.-C.; Kanatzidis, M. G. J. Am. Chem. Soc 2018, 140, 388-393.
Kuan, C.-H.; Balasaravanan, R.; Hsu, S.-M.; Ni, J.-S.; Tsai, Y.-T.; Zhang, Z.-X.; Chen, M.-C.; Eric, Diau, W.-C. Adv. Mater. 2023, 35, e2300681.
Balasaravanan, R.; Kuan, C.-H.; Hsu, S.-M.; Chang, E.-C.; Chen, Y.-C.; Tsai, Y.-T.; Jhou, M.-L.; Yau, S.-L.; Liu, C.-L.; Chen, M.-C.; Eric, Diau, W.-C. Adv. Energy Mater. 2023, 13, 2302047.
Ali, F.; R.C., C.; Sohail, M.*; Nazeeruddin, M.-K.* Adv. Ener. Meter. 2020, 10, 2002989.
Wang, S.-R.; Guo, H.-X.; Wu, Y.-Z. Materials Futures 2023, 2, 012105.
Magomedov, A.; Al-Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.* and Getautis, V. Adv. Ener. Mater., 2018, 8, 1801892.
Jiang, W.-L.; Li, F.-Z.; Li, M.-L.; Qi, F.; Lin, F.-R.; Alex, Jen, K.-Y. Angew. Chem. 2022, 61, e202213560.
Zhang, S.; Wu, R.-H.; Mu, C.; Wang, Y.-B.; Han, L.-Y.; Wu, Y.-Z.; Zhu, W.-H. ACS Materials Lett. 2022, 4, 1976-1983.
Guo, H.-X.; Liu, C.; Hu, H.-L.; Zhang, S.; Ji, X.-Y.; Cao, X.-M.; Ning, Z.-J.; Zhu, W.-H.; Tian, H.; Wu, Y.-Z. National Science Review 2023, 10, nwad057.
Al-Ashouri, A.;* Magomedov, A.;* Ros, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J.-A.; Köhnen, E.; Kasparavičius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C.-J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C.-A.; Korte, L.; Niaura, G.; Getautis V. and Albrecht, S.* Energy Environ. Sci. 2019, 12, 3356-3369.
Song, D.; Narra, S.; Li, M. Y.; Lin, J.-S. and Eric, Diau, W.-G.* ACS Energy Lett. 2021, 6, 4179–4186.
Ullah, A.; Park, K.-H.; Nguyen, H.-D.; Siddique, Y.; Shah, S.-F.-A.; Tran, H.; Park, S.; Lee, S. I.; Lee, K.-K.; Han, C.-H.; Kim, K.; Ahn, S.-J.; Jeong, I.; Park, Y.-S.* and Hong, S.-J.*Adv. Ener. Mater. 2022, 12, 2103175.
Li, Z.-N.; Tan, Q.; Chen, G.-C.; Gao, H.; Wang, J.-F.; Zhang, X.-S.; Xiu, J.-W.; Chen, W. and He, Z.-B. Nanoscale, 2023, 15, 1676–1686.
Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y. ACS Appl. Mater. Interfaces. 2018, 10, 19697-19703.
Afraj, S. N.; Zheng, D.; Velusamy, A.; Ke, W.; Cuthriell, S.; Zhang, X.; Chen, Y.; Lin, C.; Ni, J.-S.; Wasielewski, M. R.; Marks, T. J. ACS Energy Lett. 2022, 7, 2118– 2127.
Wang, Y. ; Liao, Q.-G.; Chen, J.-H.; Huang, W.;* Zhuang, X.-M.; Tang, Y.-M.; Li, B.-L.; Yao, X.-Y.; Feng, X.-Y.; Zhang, X.-H.; Su, M.-Y.; He, Z.-B.; Marks, T.-J.;* Facchetti, A.;* Guo, X.-G.* J. Am. Chem. Soc 2020, 142, 16632–16643.
Guo, R.; Zhang, X.-R.; Zheng, X.; Li, L.; Li, M.; Zhao, Y.; Zhang, S.-J.; Luo, L.; You, S.; Li, W.-X.; Gong, Z.-M.; Huang, R.; Cui, Y.; Rong, Y.-G.; Zeng, H.-P.; Li, X. Adv. Funct. Mater. 2023, 33, 2211955.
Zhang, S.; Ye, F.; Wang, X.-Y.; Chen, R.; Zhang, H.-D.; Zhan, L.-Q.; Jiang, X.-Y.; Li, Y.-W.; Liu, S.-J.; Yu, M.-J.; Yu, F.-R.; Zhang, Y.-L.; Wu, R.-H.; Liu, Z.-H.; Ning, Z.-J.; Neher, D.; Han, L.-Y.; Lin, Y.-Z.; Tian, H.; Chen, W.; * Stolterfoht, M.; * Zhang, L.-J.; * Zhu, W.-H.; * Wu, Y.-Z. * Science 2023, 380, 404–409.
Truong, M. A.*; Funasaki, T.; Ueberricke, L.; Nojo, W.; Murdey, R.; Yamada, T.; Hu, S.; Akatsuka, A.; Sekiguchi, N.; Hira, S.; Xie, L. L.; Nakamura, T.; Shioya, T.; Kan, D.; Tsuji, Y.; Likubo, S.; Yoshida, H.; Shimakawa, Y.; Hasegawa, T.; Kanemitsu, Y.; Suzuki, T. and Wakamiya, A.* J. Am. Chem. Soc. 2023, 145, 7528–7539.
Afraj, S. N.; Kuan, C.-H.; Lin, J.-S.; Ni, J.-S.; Velusamy, A.; Chen, M.-C.; Diau,W.-G Adv. Funct. Mater. 2023, 33, 2213939.
Louillat, M.-L.; Patureau, F.-W.* Reactivity of Carbazoles. 2013, 15, 164–167.
Wu, J.-T.; Liou, G.-S. Chem. Commun. 2018, 54, 2619-2622.
Wu, Z.-J.; Li, S.-R.; Xu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 14070-14074.
指導教授 陳銘洲(Chen, Ming-Chou) 審核日期 2024-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明