博碩士論文 111324069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.12.146.100
姓名 何熙燕(Xi-Yan He)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以 Lactobacillus buchneri 發酵天麻生產 γ-胺基丁酸與抗氧化活性之影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-10以後開放)
摘要(中) 天麻Gastrodia elata為蘭花的根莖,是被廣泛接受用於治療和保健的中藥材,在中國的許多藥典中都有記載。藥用天麻是植物天麻根莖的乾燥塊,形狀為長橢圓,味道甘甜。在中國主要分布於雲南和四川。天麻對人體各項生理功能的保健效果已被證實且有非常多理論依據,如袪風通絡,治療驚厥、抽搐、眩暈、頭痛、肢體麻木和風濕等功效。天麻中的各項活性物質以多酚化合物最為突出,含量高且具有保健效果。因人們的保健意識日益增強,人們對天麻的需求和使用也愈發頻繁。而由微生物發酵製成的後發酵天麻,使得微生物與天麻的活性物質顯著增強。依照特定的菌株以不同的發酵條件,可製備出有特殊生物活性的後發酵天麻。乳酸菌的發展相當悠久,其具備顯著的功能性,是作為益生菌的潛力菌種,且具有代謝生產GABA及多酚物質的能力。本研究的目的在於利用布氏乳桿菌(Lactobacillus buchneri BCE119151)發酵天麻,並透過最適化發酵條件及各項發酵參數做探討,來達到最適化生產GABA以及提升其活性物質。
本研究將探討各項發酵條件—天麻粉末的添加量、不同的碳源及添加量、不同的氮源及添加量、MSG的濃度以及起始pH值,並依照菌種的生長活性和生產GABA的活性等參數進行最適化討論。本研究成功以最適化發酵條件—添加3%天麻粉末、3%蔗糖、6%MRSN medium、9%MSG、起始pH值6.0及發酵溫度37°C在發酵後達到GABA產量32.492g/L、單位MSG對GABA轉化率YG/M0.62g/g、最大菌落數VCCmax9.477logCFU/mL、單位菌重對GABA轉化率YG/VCC3.428g/g、總多酚含量775.196mgGA/L。綜合上述結果,L. buchneri BCE119151菌種結合天麻進行發酵,可以發展出具有高生物活性的中藥發酵成品,並且可以將其應用於相關保健食品及飲品的開發。
摘要(英) Gastrodia elata, the rhizome of the orchid, is widely accepted as a medicinal herb for treatment and health care, and is documented in many pharmacopoeias in China. Medicinal gastrodia is a dried block of the rhizome of the plant Gastrodia gastrodia, which is oblong in shape and has a sweet taste. In China, it is mainly found in Yunnan and Sichuan. The health care effect of gastrodia on various physiological functions of the human body has been proven and has many theoretical basis, such as the effect of treating convulsions, dizziness, headache, limb numbness and rheumatism. Polyphenolic compounds are the most prominent active substances in Gastrodia, with high content and health effects. Due to people′s increasing awareness of health care, people′s demand and use of gastrodia are becoming more and more frequent. The post-fermented gastrodia made by microbial fermentation significantly enhanced the active substances of microorganisms and gastrodia. According to the specific strain with different fermentation conditions, post-fermented gastrodia with special biological activity can be prepared. Lactic acid bacteria have a long history of development, and they have remarkable functionality, are potential strains as probiotics, and have the ability to metabolize and produce GABA and polyphenols. The purpose of this study was to ferment Gastrodia by using Lactobacillus bruchneri BCE119151, and to explore the optimal fermentation conditions and various fermentation parameters to achieve the optimal production of GABA and enhance its active substances.
This study will explore various fermentation conditions - the addition amount of Gastrodia powder, different carbon sources and addition amounts, different nitrogen sources and addition amounts, MSG concentration and starting pH value, and according to the growth activity and GABA production of the bacteria Activity and other parameters are discussed for optimization. This study successfully optimized the fermentation conditions - adding 3% Gastrodia elata powder, 3% sucrose, 6% MRSN medium, 9% MSG, an initial pH value of 6.0 and a fermentation temperature of 37°C to achieve a GABA production of 32.492g/L after fermentation. , GABA conversion rate per unit MSG YG/M0.62g/g, maximum colony number VCCmax9.477logCFU/mL, GABA conversion rate per unit bacterial weight YG/VCC3.428g/g, total polyphenol content 775.196mgGA/L. Based on the above results, the L. buchneri BCE119151 strain combined with Gastrodia elata for fermentation can develop fermented traditional Chinese medicine products with high biological activity, and can be applied to the development of related health foods and beverages.
關鍵字(中) ★ 天麻
★ 發酵
★ 布氏乳桿菌
★ 保健食品
★ γ-胺基丁酸
★ 抗氧化活性
關鍵字(英) ★ Gastrosia elata
★ Fermentation
★ Lactobacillus buchneri
★ Healthy food
★ γ-aminobutyric acid
★ Antioxidant activity
論文目次 摘要 II
Abstract III
致謝 V
目錄 VI
表目錄 X
圖目錄 XI
第1章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第2章 文獻回顧 3
2.1 天麻 3
2.1.1 天麻的成分組成 4
2.1.2 天麻的藥理 7
2.2 乳酸菌的基本介紹 9
2.2.1 Lactobacillus buchneri菌種的基本介紹 14
2.3 Γ-胺基丁酸 15
2.4 影響發酵工程的物化因子 18
2.4.1 溫度 18
2.4.2 培養基組成 18
2.4.3 pH值 19
第3章 材料與方法 20
3.1 實驗規劃 20
3.2 實驗材料 22
3.2.1 實驗菌株 22
3.2.2 實驗藥品 23
3.2.3 實驗儀器與設備 25
3.3 實驗方法 27
3.3.1 Lactobacillus buchneri菌株保存 27
3.3.2 Lactobacillus buchneri菌株液態種瓶培養 30
3.3.3 Lactobacillus buchneri發酵生長曲線測試 30
3.3.4 天麻粉末製備 31
3.3.5 天麻液態發酵最適化發酵條件討論 31
3.4 分析方法 35
3.4.1 菌落數分析 35
3.4.2 PH值分析 35
3.4.3 還原糖分析 36
3.4.4 麩胺酸鈉及γ-胺基丁酸濃度分析 38
3.4.5 總多酚含量分析 41
3.4.6 乳酸濃度分析 42
3.4.7 天麻素及對羥基苯甲醇濃度分析 44
第4章 結果與討論 46
4.1 Lactobacillus buchneri發酵動力學之討論 46
4.2 Lactobacillus buchneri生產GABA之討論 47
4.3 培養基對發酵Lactobacillus buchneri之影響 49
4.3.1 氮源及碳源對發酵Lactobacillus buchneri產生GABA之影響 49
4.4 天麻粉末添加量對發酵天麻之影響 54
4.4.1 天麻粉末添加量對發酵天麻產生GABA之影響 54
4.4.2 天麻粉末添加量對發酵天麻抗氧化物質活性之影響 57
4.4.3 天麻粉末添加量對發酵天麻影響之結論 58
4.5 Sucrose添加量對發酵天麻之影響 60
4.5.1 Sucrose添加量對發酵天麻生產GABA之影響 60
4.5.2 Sucrose添加量對發酵天麻抗氧化物質活性之影響 65
4.5.3 Sucrose添加量對發酵天麻影響之結論 66
4.6 氮源量對發酵天麻之影響 67
4.6.1 MRSN medium添加量對發酵天麻生產GABA之影響 67
4.6.2 MRSN medium添加量對發酵天麻抗氧化物質活性之影響 71
4.6.3 MRSN medium添加量對發酵天麻影響之結論 72
4.7 PH值對發酵天麻之影響 73
4.7.1 起始pH值對L. buchneri BCE119151生長之影響 73
4.7.2 起始pH值對發酵天麻生產GABA之影響 74
4.7.3 起始pH值對發酵天麻抗氧化物質活性之影響 77
4.7.4 起始pH值對發酵天麻影響之結論 78
4.8 MSG濃度對發酵天麻之影響 79
4.8.1 MSG濃度對發酵天麻最適化生產GABA之討論 79
4.8.2 MSG濃度對發酵天麻影響之結論 83
4.9 溫度對發酵天麻之影響 84
4.9.1 發酵溫度對L. buchneri BCE119151生長之影響 84
4.9.2 發酵溫度對發酵天麻生產GABA之影響 85
4.9.3 發酵溫度對發酵天麻抗氧化物質活性之影響 88
4.9.4 發酵溫度對發酵天麻影響之結論 89
4.10 最適化發酵操作條件之結論 90
4.11 最適化發酵條件之乳酸發酵天麻成分探討 92
4.11.1 乳酸發酵天麻中菌種代謝產物之探討 92
4.11.2 乳酸發酵天麻中天麻素和對羟基苯甲醇之探討 93
第5章 結論與建議 95
5.1 結論 95
5.2 建議 97
參考文獻 98
參考文獻 [1] Bensky D, Gamble A. Chinese herbal medicine: materia medica. Rev. ed. Seattle: Eastland Press; 1993. p. 971–4.
[2] Tang W, Eisenbrand G. Gastrodia elata B1. Chinese drugs of plant origin. Berlin/Heidelberg: Springer-Verlag; 1992. p. 545–8.
[3] Su, Z., Yang, Y., Chen, S., Tang, Z., & Xu, H. (2023). The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. Journal of Ethnopharmacology, 116467.
[4] Xu, J., & Guo, S. (2000). Retrospect on the research of the cultivation of Gastrodia elata Bl, a rare traditional Chinese medicine. Chinese Medical Journal, 113(08), 686-692.
[5] Zhan, H. D., Zhou, H. Y., Sui, Y. P., Du, X. L., Wang, W. H., Dai, L., ... & Jiang, T. L. (2016). The rhizome of Gastrodia elata Blume–An ethnopharmacological review. Journal of ethnopharmacology, 189, 361-385.
[6] Wu, J., Wu, B., Tang, C., & Zhao, J. (2017). Analytical techniques and pharmacokinetics of Gastrodia elata Blume and its constituents. Molecules, 22(7), 1137.
[7] Zhenxiang X, Enhui L, et al. Report on 35 cases of vascular nervous headache treated by acupuncture point blockage therapy with gastrodia tuber injection. J Tradit Chin Med 1981;22(3):31–2.
[8] Guoping L, Chunqin W, Zhongqin C, et al. Pharmacological and clinical researches of gastrodin injection. Chin Tradit Herb Drugs 2002;33(5):449–50.
[9] Yao T, Mian X, Juan D, et al. Clinical study on gastrodin by dripping injection in treating neurasthenia. Chinese Tradit Herb Drugs 2000;31(7):540–2.
[10] Yunxia D. Observation on clinical effect of Tian Xuan Qing (gastrodin) in treating vertigo and headache. Chin Tradit Herb Drugs 2000;31(4):288–303
[11] Ojemann, L. M., Nelson, W. L., Shin, D. S., Rowe, A. O., & Buchanan, R. A. (2006). Tian ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy & Behavior, 8(2), 376-383.
[12] Hsieh CL, Chang CH, Chiang SY, et al. Anticonvulsive and free radical scavenging activities of vanillyl alcohol in ferric chlorideinduced epileptic seizures in Sprague–Dawley rats. Life Sci 2000;67:1185–95.
[13] Ha JH, Lee DU, Lee JT, et al. 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic neuromodulation of the rat brain. J Ethnopharmacol 2000;73:329–33.
[14] Taguchi H, Yosioka I, Yamasaki K, Kim IH. Studies on the constituents of Gastrodia elata Blume. Chem Pharm Bull 1981;29:55–62.
[15] Lin JH, Liu YC, Hau JP, Wen KC. Parishins B and C from rhizomes of Gastrodia elata. Phytochemistry 1996;42:549–51.
[16] Hayashi J, Sekine T, Deguchi S, et al. Phenolic compounds from Gastrodia rhizome and relaxant effects of related compounds on isolated smooth muscle preparation. Phytochemistry 2002;59:513–9.
[17] Andersson M, Bergendorff O, Nielson M, et al. Inhibition of kainic acid binding to glutamate receptors by extracts of Gastrodia. Phytochemistry 1995;38:835–6.
[18] Pyo MK, Jin JL, Koo YK, Yun-Choi HS. Phenolic and furan type compounds isolated from Gastrodia elata and their anti-platelet effects. Arch Pharm Res 2004;27:381–5.
[19] Yun-Choi, H. S., Pyo, M. K., & Park, K. M. (1998). Isolation of 3-O-(4′-Hydroxybenzyl)-β-sitosterol and 4-[4′-(4 ″-Hydroxybenzyloxy) benzyloxy] benzyl methyl ether from fresh tubers of Gastrodia elata. Archives of pharmacal research, 21, 357-360.
[20] Jang, J. H., Son, Y., Kang, S. S., Bae, C. S., Kim, J. C., Kim, S. H., ... & Moon, C. (2015). Neuropharmacological potential of Gastrodia elata Blume and its components. Evidence‐Based Complementary and Alternative Medicine, 2015(1), 309261.
[21] Baek NI, Choi SY, Park JK, et al. Isolation and identification of succinic semialdehyde dehydrogenase inhibitory compound from the rhizome of Gastrodia elata Blume. Arch Pharm Res 1999;22(2):219–24.
[22] Von Wright, A., & Axelsson, L. (2019). Lactic acid bacteria: an introduction. In Lactic acid bacteria (pp. 1-16). CRC Press.
[23] Gilliland, S. E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology reviews, 7(1-2), 175-188.
[24] Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78.
[25] Heinl, S., Wibberg, D., Eikmeyer, F., Szczepanowski, R., Blom, J., Linke, B., ... & Schlüter, A. (2012). Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. Journal of Biotechnology, 161(2), 153-166.
[26] Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung Jr, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of dairy science, 101(5), 3980-4000.
[27] Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., & Kimura, T. (2005). Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food microbiology, 22(6), 497-504.
[28] Huang, J., Mei, L. H., Wu, H., & Lin, D. Q. (2007). Biosynthesis of γ-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World Journal of Microbiology and Biotechnology, 23, 865-871.
[29] Li, H., & Cao, Y. (2010). Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino acids, 39, 1107-1116.
[30] Coda, R., Rizzello, C. G., & Gobbetti, M. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International journal of food microbiology, 137(2-3), 236-245.
[31] Ning Yawei, Ma Mengge, Yang Zheng, Hou Linlin, Zhao Zhongqing, Chen Yi, ... & Jia Yingmin. (2020). Preparation methods of γ-aminobutyric acid and research progress in functional foods. Food and Fermentation Industry, 46( 23), 238-247.
[32] Zhang Ruijiao, Yang Peng, Gong Andong, & Wang Tianwen. (2023). Research progress on γ-aminobutyric acid production by microbial fermentation. Journal of Xinyang Normal University (Natural Science Edition), 36(1), 162-172.
[33] Dhakal, R., Bajpai, V. K., & Baek, K. H. (2012). Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Brazilian Journal of Microbiology, 43, 1230-1241.
[34] 相繼芬, 鄧辰辰, 劉圓, 韓蕾, 徐桂紅, & 蕭偉. (2018). HPLC 測定天麻配方顆粒中天麻素和對羥基苯甲醇的含量.收藏, 11 .
[35] Lee, E. J., & Lee, S. P. (2014). Novel bioconversion of sodium glutamate to γ-amino butyric acid by co-culture of Lactobacillus plantarum K154 in Ceriporia lacerata culture broth. Food Science and Biotechnology, 23, 1997-2005.
[36] Skrajda-Brdak, M., Konopka, I., Tańska, M., & Czaplicki, S. (2019). Changes in the content of free phenolic acids and antioxidative capacity of wholemeal bread in relation to cereal species and fermentation type. European Food Research and Technology, 245, 2247-2256.
[37] Saa, D. T., Di Silvestro, R., Dinelli, G., & Gianotti, A. (2017). Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT-Food Science and Technology, 83, 26-32.
[38] Roth-Maier, D. A., Kettler, S. I., & Kirchgessner, M. (2002). Availability of vitamin B 6 from different food sources. International journal of food sciences and nutrition, 53(2), 171-179.
[39] Lin, Q. (2013). Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production. Brazilian Journal of Microbiology, 44, 183-187.
[40] Teng, J., Gong, Z., Deng, Y., Chen, L., Li, Q., Shao, Y., ... & Xiao, W. (2017). Purification, characterization and enzymatic synthesis of theaflavins of polyphenol oxidase isozymes from tea leaf (Camellia sinensis). Lwt, 84, 263-270.

[41] Lu, X., Xie, C. H., & Gu, Z. (2009). Optimisation of fermentative parameters for GABA enrichment by Lactococcus lactis. Czech Journal of Food Sciences, 27(6), 433-442.
[42] Villegas, J. M., Brown, L., de Giori, G. S., & Hebert, E. M. (2016). Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT-Food Science and Technology, 67, 22-26.
[43] Li and Y. Cao, "Lactic acid bacterial cell factories for gamma-aminobutyric acid,"Amino Acids, vol. 39, pp. 1107-1116, 2010.
[44] Li, H., Qiu, T., Huang, G., & Cao, Y. (2010). Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microbial Cell Factories, 9, 1-7.
[45] Yu, J. J., & Oh, S. H. (2011). ${gamma} $-Aminobutyric Acid Production and Glutamate Decarboxylase Activity of Lactobacillus sakei OPK2-59 Isolated from Kimchi. Korean Journal of Microbiology, 47(4), 316-322.
[46] Kim, J. A., Park, M. S., Kang, S. A., & Ji, G. E. (2014). Production of γ-aminobutyric acid during fermentation of Gastrodia elata Bl. by co-culture of Lactobacillus brevis GABA 100 with Bifidobacterium bifidum BGN4. Food science and biotechnology, 23, 459-466.
[47] Liu, S., Skinner-Nemec, K. A., & Leathers, T. D. (2008). Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. Journal of Industrial Microbiology and Biotechnology, 35(2), 75-81.
[48] Yu, S. S., Zhao, J., Zheng, W. P., & Zhao, Y. (2010). Neuroprotective effect of 4-hydroxybenzyl alcohol against transient focal cerebral ischemia via anti-apoptosis in rats. Brain Research, 1308, 167-175.
[49] Jung, T. Y., Suh, S. I., Lee, H., Kim, I. S., Kim, H. J., Yoo, H. S., & Lee, S. R. (2007). Protective effects of several components of Gastrodia elata on lipid peroxidation in gerbil brain homogenates. Phytotherapy Research, 21(10), 960-964.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2024-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明