參考文獻 |
(1) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
(2) He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioactive Materials 2022, 8, 109-123.
(3) Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S.-Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
(4) Budi, C. S.; Deka, J. R.; Saikia, D.; Kao, H.-M.; Yang, Y.-C. Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of hazardous materials 2020, 384, 121270.
(5) Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical reviews 1997, 97 (6), 2373-2420.
(6) Rao, N.; Wang, M.; Shang, Z.; Hou, Y.; Fan, G.; Li, J. CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods. Energy & fuels 2018, 32 (1), 670-677.
(7) Kulkarni, S. Recent trends in the applications of zeolites and molecular sieves for the synthesis of speciality and fine chemicals. In Studies in Surface Science and Catalysis, Vol. 113; Elsevier, 1998; pp 151-161.
(8) Kang, T.; Park, Y.; Choi, K.; Lee, J. S.; Yi, J. Ordered mesoporous silica (SBA-15) derivatized with imidazole-containing functionalities as a selective adsorbent of precious metal ions. Journal of Materials Chemistry 2004, 14 (6), 1043-1049.
(9) Solberg, S. M.; Landry, C. C. Adsorption of DNA into mesoporous silica. The journal of physical chemistry B 2006, 110 (31), 15261-15268.
(10) Hu, Y.; Zhi, Z.; Zhao, Q.; Wu, C.; Zhao, P.; Jiang, H.; Jiang, T.; Wang, S. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous and Mesoporous Materials 2012, 147 (1), 94-101.
(11) Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
(12) Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials 2016, 1 (6), 1-17.
(13) Kankala, R. K.; Han, Y.-H.; Xia, H.-Y.; Wang, S.-B.; Chen, A.-Z. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. Journal of Nanobiotechnology 2022, 20 (1), 126.
(14) Zhao, X. S.; Lu, G. Q.; Millar, G. J. Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
(15) Kresge, a. C.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J.; Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710-712.
(16) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
(17) Fayed, T. A.; Shaaban, M. H.; El-Nahass, M. N.; Hassan, F. M. Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
(18) Cortés, H.; Hernández-Parra, H.; Bernal-Chávez, S. A.; Prado-Audelo, M. L. D.; Caballero-Florán, I. H.; Borbolla-Jiménez, F. V.; González-Torres, M.; Magaña, J. J.; Leyva-Gómez, G. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials 2021, 14 (12), 3197.
(19) Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R. MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
(20) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568, 10.1039/F29767201525.
(21) Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews 2002, 102 (11), 4093-4138.
(22) Richtering, W. The Colloidal Domain – where physics, chemistry, biology and technology meet. 2001, 11 (4), 177-177. (acccessed 2023-05-26).
(23) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321.
(24) Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie (International ed. in English) 2006, 45, 3216-3251.
(25) Soler-Illia, G. J. d. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical reviews 2002, 102 (11), 4093-4138.
(26) Ghorbani, F.; Kamari, S. Core–shell magnetic nanocomposite of Fe3O4@ SiO2@ NH2 as an efficient and highly recyclable adsorbent of methyl red dye from aqueous environments. Environmental Technology & Innovation 2019, 14, 100333.
(27) Boveri, M.; Aguilar-Pliego, J.; Pérez-Pariente, J.; Sastre, E. Optimization of the preparation method of HSO3-functionalized MCM-41 solid catalysts. Catalysis today 2005, 107, 868-873.
(28) Walcarius, A.; Delacôte, C. Rate of access to the binding sites in organically modified silicates. 3. Effect of structure and density of functional groups in mesoporous solids obtained by the co-condensation route. Chemistry of materials 2003, 15 (22), 4181-4192.
(29) Niculescu, V.; Sandru, C.; Paun, N.; Miricioiu, M. An overview on the removal of nitrogen compounds from water and wastewater. Smart Energy and Sustainable Environment 2017, 20 (2), 31-42.
(30) Steel, A.; Carr, S. W.; Anderson, M. W. 29Si solid-state NMR study of mesoporous M41S materials. Chemistry of materials 1995, 7 (10), 1829-1832.
(31) Park, S.; Baeck, S.-H.; Kim, T. J.; Chung, Y.-M.; Oh, S.-H.; Song, I. K. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on SO3H-functionalized mesoporous silica. Journal of Molecular Catalysis A: Chemical 2010, 319 (1-2), 98-107.
(32) Rodríguez-Gómez, A.; Platero, F.; Caballero, A.; Colón, G. Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Molecular Catalysis 2018, 445, 142-151.
(33) Zhou, P.; Blubaum, J. E.; Burns, C. T.; Natale, N. R. The direct synthesis of 2-Oxazolines from carboxylic esters using lanthanide chloride as catalyst. Tetrahedron letters 1997, 38 (40), 7019-7020.
(34) Mallik, A. K.; Moktadir, M. A.; Rahman, M. A.; Shahruzzaman, M.; Rahman, M. M. Progress in surface-modified silicas for Cr(VI) adsorption: A review. Journal of Hazardous Materials 2022, 423, 127041.
(35) Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303. (acccessed 2023/05/25).
(36) Yang, K. N.; Zhang, C. Q.; Wang, W.; Wang, P. C.; Zhou, J. P.; Liang, X. J. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer biology & medicine 2014, 11 (1), 34-43. From NLM.
(37) Li, W.; Zhao, D. An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946, 10.1039/C2CC36964H.
(38) Maria Chong, A.; Zhao, X. Functionalization of SBA-15 with APTES and characterization of functionalized materials. The Journal of Physical Chemistry B 2003, 107 (46), 12650-12657.
(39) Ojeda-López, R.; Pérez-Hermosillo, I. J.; Marcos Esparza-Schulz, J.; Cervantes-Uribe, A.; Domínguez-Ortiz, A. SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio. adsorption 2015, 21, 659-669.
(40) Xu, L.; Yao, F.; Luo, J.; Wan, C.; Ye, M.; Cui, P.; An, Y. Facile synthesis of amine-functionalized SBA-15-supported bimetallic Au–Pd nanoparticles as an efficient catalyst for hydrogen generation from formic acid. RSC advances 2017, 7 (8), 4746-4752.
(41) Melero, J. A.; van Grieken, R.; Morales, G. Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews 2006, 106 (9), 3790-3812.
(42) Paniagua, M.; Cuevas, F.; Morales, G.; Melero, J. A. Sulfonic Mesostructured SBA-15 Silicas for the Solvent-Free Production of Bio-Jet Fuel Precursors via Aldol Dimerization of Levulinic Acid. ACS Sustainable Chemistry & Engineering 2021, 9 (17), 5952-5962.
(43) Wang, Y.; Li, Y.; Wang, Z.; He, X. Hydrogen formation from methane rich combustion under high pressure and high temperature conditions. international journal of hydrogen energy 2017, 42 (20), 14301-14311.
(44) Palo, D. R.; Dagle, R. A.; Holladay, J. D. Methanol steam reforming for hydrogen production. Chemical reviews 2007, 107 (10), 3992-4021.
(45) Alpaydın, C. Y.; Gülbay, S. K.; Colpan, C. O. A review on the catalysts used for hydrogen production from ammonia borane. International Journal of Hydrogen Energy 2020, 45 (5), 3414-3434.
(46) Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 2020, 45 (7), 3847-3869.
(47) Chandra, M.; Xu, Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources 2007, 168 (1), 135-142.
(48) Chen, W.; Fu, W.; Qian, G.; Zhang, B.; Chen, D.; Duan, X.; Zhou, X. Synergistic Pt-WO3 dual active sites to boost hydrogen production from ammonia borane. Iscience 2020, 23 (3).
(49) Akbayrak, S.; Özkar, S. Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia–Borane. ACS Applied Materials & Interfaces 2012, 4 (11), 6302-6310.
(50) Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006, 163 (1), 364-370.
(51) Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 2001, 31 (2), 145-157.
(52) Gao, W.; Zhang, G.; Zhang, X.; Zhou, S.; Wang, Z. Degradation of Methylene Blue in the Photo-Fenton-Like Process with WO3-Loaded Porous Carbon Nitride Nanosheet Catalyst. Water 2022, 14 (16), 2569.
(53) Ulfa, M.; Al Afif, H.; Saraswati, T. E.; Bahruji, H. Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials 2022, 15 (16), 5471.
(54) Lei, Y.; Cui, Y.; Huang, Q.; Dou, J.; Gan, D.; Deng, F.; Liu, M.; Li, X.; Zhang, X.; Wei, Y. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceramics International 2019, 45 (14), 17653-17661.
(55) Chaudhuri, H.; Dash, S.; Sarkar, A. Single-Step Room-Temperature in Situ Syntheses of Sulfonic Acid Functionalized SBA-16 with Ordered Large Pores: Potential Applications in Dye Adsorption and Heterogeneous Catalysis. Industrial & Engineering Chemistry Research 2017, 56 (11), 2943-2957.
(56) Jin, Y.; Tang, W.; Wang, J.; Chen, Z.; Ren, F.; Sun, Z.; Wang, F.; Ren, P. High photocatalytic activity of spent coffee grounds derived activated carbon-supported Ag/TiO2 catalyst for degradation of organic dyes and antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 655, 130316.
(57) Vinay, S.; Udayabhanu; Nagarju, G.; Chandrappa, C.; Chandrasekhar, N. Enhanced photocatalysis, photoluminescence, and anti-bacterial activities of nanosize Ag: green synthesized via Rauvolfia tetraphylla (devil pepper). SN Applied Sciences 2019, 1, 1-14.
(58) Li, N.; Wang, J.-G.; Zhou, H.-J.; Sun, P.-C.; Chen, T.-H. Synthesis of single-crystal-like, hierarchically nanoporous silica and periodic mesoporous organosilica, using polyelectrolyte–surfactant mesomorphous complexes as a template. Chemistry of Materials 2011, 23 (18), 4241-4249.
(59) Xu, J.; Liu, W.; Yu, Y.; Du, J.; Li, N.; Xu, L. Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization. RSC Advances 2014, 4 (71), 37470-37478.
(60) Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q. Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
(61) Chandra, M.; Xu, Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of Power Sources 2006, 159 (2), 855-860.
(62) Sharma, M.; Jain, T.; Singh, S.; Pandey, O. Photocatalytic degradation of organic dyes under UV–Visible light using capped ZnS nanoparticles. Solar Energy 2012, 86 (1), 626-633.
(63) Cui, C.; Liu, Y.; Mehdi, S.; Wen, H.; Zhou, B.; Li, J.; Li, B. Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Applied Catalysis B: Environmental 2020, 265, 118612.
(64) Wei, Z.; Liu, Y.; Peng, Z.; Song, H.; Liu, Z.; Liu, B.; Li, B.; Yang, B.; Lu, S. Cobalt-Ruthenium Nanoalloys Parceled in Porous Nitrogen-Doped Graphene as Highly Efficient Difunctional Catalysts for Hydrogen Evolution Reaction and Hydrolysis of Ammonia Borane. ACS Sustainable Chemistry & Engineering 2019, 7 (7), 7014-7023.
(65) Zhang, J.; Chen, C.; Chen, S.; Hu, Q.; Gao, Z.; Li, Y.; Qin, Y. Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane. Catalysis Science & Technology 2017, 7 (2), 322-329.
(66) Hu, Y.; Wang, Y.; Lu, Z.-H.; Chen, X.; Xiong, L. Core–shell nanospheres Pt@ SiO2 for catalytic hydrogen production. Applied Surface Science 2015, 341, 185-189.
(67) Irum, M.; Zaheer, M.; Friedrich, M.; Kempe, R. Mesoporous silica nanosphere supported platinum nanoparticles (Pt@ MSN): One-pot synthesis and catalytic hydrogen generation. RSC advances 2016, 6 (13), 10438-10441.
(68) Zhang, H.; Zhang, L.; Rodríguez-Pérez, I. A.; Miao, W.; Chen, K.; Wang, W.; Li, Y.; Han, S. Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science 2021, 540, 148296.
(69) Dai, P.; Zhao, X.; Xu, D.; Wang, C.; Tao, X.; Liu, X.; Gao, J. Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. International Journal of Hydrogen Energy 2019, 44 (53), 28463-28470.
(70) Saha, S.; Basak, V.; Dasgupta, A.; Ganguly, S.; Banerjee, D.; Kargupta, K. Graphene supported bimetallic G–Co–Pt nanohybrid catalyst for enhanced and cost effective hydrogen generation. International journal of hydrogen energy 2014, 39 (22), 11566-11577. |