參考文獻 |
[1]U.S. Energy Consumption Statistics,2023年9月6日,資料來源: https://www.rubyhome.com/blog/energy-consumption-stats/
[2]Vasylkovskyi, V.; Bespalova, I.; Slipchenko, M.; Slipchenko, O.; Zholudov, Y.; Chichkov, B. ‘‘Review: Electrochemiluminescence of Perovskite-Related Nanostructures.’’ Crystals 2023, 13, 455. 2023.
[3]Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. ‘‘Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.’’ J. Am. Chem. Soc. 2009, 131, 6050-6051.
[4]Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. ‘‘Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.’’ Sci. Rep. 2012, 2, 591.
[5] Best Research-Cell Efficiency Chart,2024年,資料來源: https://www.nrel.gov/pv/cell-efficiency.html
[6]Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., ‘‘Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.’’ Energy & Environmental Science 2015, 8 (5), 1602-1608.
[7] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. ‘‘Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.’’ Nano letters 2013, 13 (4), 1764-1769.
[8]Huang, Y.; Li, L.; Liu, Z.; Jiao, H.; He, Y.; Wang, X.; Zhu, R.; Wang, D.; Sun, J.; Chen, Q.; Zhou, H., ‘‘The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals.’’ Journal of Materials Chemistry A 2017, 5 (18), 8537-8544.
[9] Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. ‘‘Enhanced photovoltage for inverted planar heterojunction perovskite solar cells.’’ Science 2018, 360 (6396), 1442-1446.
[10] Nasti, G.; Abate, A. ‘‘Tin halide perovskite (ASnX3) solar cells: a comprehensive guide toward the highest power conversion efficiency.’’ Advanced Energy Materials 2020, 10 (13), 1902467.
[11]Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P. ‘‘A review of inorganic hole transport materials for perovskite solar cells.’’ Advanced Materials Interfaces 2018, 5 (22), 1800882.
[12]Li, S.; Cao, Y.-L.; Li, W.-H.; Bo, Z.-S. ‘‘A brief review of hole transporting materials commonly used in perovskite solar cells.’’Rare Metals 2021, 40 (10), 2712-2729.
[13]Duan, C.; Liu, Z.; Yuan, L.; Zhu, H.; Luo, H.; Yan, K. ‘‘PEDOT: PSS‐Metal Oxide Composite Electrode with Regulated Wettability and Work Function for High‐Performance Inverted Perovskite Solar Cells.’’ Advanced Optical Materials 2020, 8 (17), 2000216.
[14]Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. ‘‘Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications.’’ Journal of photonics for energy 2016, 6 (2), 022001-022001.
[15] Wang, Y.-D.; Wang, Y.; Shao, J.-Y.; Lan, Y.; Lan, Z.-R.; Zhong, Y.-W.; Song, Y. ‘‘Defect Passivation by a D–A–D Type Hole-Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells.’’ ACS Energy Letters 2021, 6 (5), 2030-2037.
[16]Wang, Y.; Chen, Q.; Fu, J.; Liu, Z.; Sun, Z.; Zhang, S.; Zhu, Y.; Jia, X.; Zhang, J.; Yuan, N. ‘‘Annealing-and doping-free hole transport material for pin perovskite solar cells with efficiency achieving over 21%.’’ Chemical Engineering Journal 2022, 433, 133265.
[17]Li, X.-C.; Tu, Y.-G.; Meng, C.; Song, W.; Cheng, T.; Gong, Y.-T.; Min, J.; Zhu, R.; Lai, W.-Y.; Huang, W.‘‘Diindolotriazatruxene-Based Hole-Transporting Materials for High-Efficiency Planar Perovskite Solar Cells.’’ ACS Applied Materials & Interfaces 2019, 11 (49), 45717-45725.
[18]Urieta-Mora, J.; Zimmermann, I.; Arago, J.; Molina-Ontoria, A.; Orti, E.; Martín, N.; Nazeeruddin, M. K. ‘‘Dibenzoquinquethiophene-and dibenzosexithiophene-based hole-transporting materials for perovskite solar cells.’’ Chemistry of Materials 2018, 31 (17), 6435-6442.
[19]Chiu, Y.-L.; Li, C.-W.; Kang, Y.-H.; Lin, C.-W.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J. ‘‘Dual-functional enantiomeric compounds as hole-transporting materials and interfacial layers in perovskite solar cells.’’ ACS Applied Materials & Interfaces 2022, 14 (22), 26135-26147.
[20]Qin, T.; Wu, F.; Ma, D.; Mu, Y.; Chen, X.; Yang, Z.; Zhu, L.; Zhang, Y.; Zhao, J.; Chi, Z. ‘‘Asymmetric sulfonyldibenzene-based hole-transporting materials for efficient perovskite solar cells: Inspiration from organic thermally-activated delayed fluorescence molecules.’’ ACS Materials Letters 2020, 2 (9), 1093-1100.
[21]Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G. ‘‘Asymmetric 3D hole-transporting materials based on triphenylethylene for perovskite solar cells.’’ Chemistry of Materials 2019, 31 (15), 5431-5441.
[22]Cheng, M.; Aitola, K.; Chen, C.; Zhang, F.; Liu, P.; Sveinbjörnsson, K.; Hua, Y.; Kloo, L.; Boschloo, G.; Sun, L. ‘‘Acceptor–Donor–Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells.’’ Nano Energy 2016, 30, 387-397.
[23]Sonigara, K. K.; Shao, Z.; Prasad, J.; Machhi, H. K.; Cui, G.; Pang, S.; Soni, S. S. ‘‘Organic ionic plastic crystals as hole transporting layer for stable and efficient perovskite solar cells.’’ Advanced Functional Materials 2020, 30 (28), 2001460.
[24]Du, Y.; Wu, J.; Zhang, X.; Zhu, Q.; Zhang, M.; Liu, X.; Zou, Y.; Wang, S.; Sun, W. ‘‘Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells.’’ Journal of Energy Chemistry 2021, 52, 84-91.
[25]Hung, C.-M.; Lin, J.-T.; Yang, Y.-H.; Liu, Y.-C.; Gu, M.-W.; Chou, T.-C.; Wang, S.-F.; Chen, Z.-Q.; Wu, C.-C.; Chen, L.-C. ‘‘Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions R, R-Diphenylamino-phenyl-pyridinium-(CH2) n-sulfonates: All-Round Improvement on the Solar Cell Performance.’’ JACS Au 2022, 2 (5), 1189-1199.
[26]Truong, M. A.; Funasaki, T.; Ueberricke, L.; Nojo, W.; Murdey, R.; Yamada, T.; Hu, S.; Akatsuka, A.; Sekiguchi, N.; Hira, S. ‘‘Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells.’’ Journal of the American Chemical Society 2023, 145 (13), 7528-7539.
[27]Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z. ‘‘Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement.’’ Journal of the American Chemical Society 2018, 140 (31), 10016-10024.
[28]Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P. M. ‘‘In situ synthesis of lead-free halide perovskite–COF nanocomposites as photocatalysts for photoinduced polymerization in both organic and aqueous phases.’’ ACS Materials Letters 2022, 4 (3), 464-471.
[29]Cao, J.; Liu, C.-K.; Piradi, V.; Loi, H.-L.; Wang, T.; Cheng, H.; Zhu, X.; Yan, F. ‘‘Ultrathin self-assembly two-dimensional metal–organic framework films as hole transport layers in ideal-bandgap perovskite solar cells.’’ ACS Energy Letters 2022, 7 (10), 3362-3369.
[30]Izumi, S.; Higginbotham, H. F.; Nyga, A.; Stachelek, P.; Tohnai, N.; Silva, P. d.; Data, P.; Takeda, Y.; Minakata, S. ‘‘Thermally activated delayed fluorescent donor–acceptor–donor–acceptor π-conjugated macrocycle for organic light-emitting diodes.’’ Journal of the American Chemical Society 2020, 142 (3), 1482-1491.
[31]Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H. ‘‘Host–Host Interactions Control Self‐assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co‐assembled with anti‐Electrostatic Bisulfate Dimers.’’ Chemistry–A European Journal 2018, 24 (39), 9841-9852.
[32]Wang, J.; Zheng, A.; Xiang, Y.; Liu, J. ‘‘BN-Embedded Cycloarenes: One-Pot Borylation Synthesis, Photoelectric Properties, and Application in Perovskite Solar Cells.’’ Journal of the American Chemical Society 2023, 145 (27), 14912-14921.
[33]Zhang, N.; Yang, L.; Li, W.; Zhu, J.; Chi, K.; Chang, D.; Qiao, Y.; Wang, T.; Zhao, Y.; Lu, X. ‘‘Alkyl-substituted N, S-embedded heterocycloarenes with a planar aromatic configuration for hosting fullerenes and organic field-effect transistors.’’ Journal of the American Chemical Society 2022, 144 (47), 21521-21529.
[34]Wu, T.; Li, X.; Qi, Y.; Zhang, Y.; Han, L. ‘‘Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance.’’ ChemSusChem 2021, 14, 4354-4376. |