博碩士論文 111623017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.188.184.186
姓名 邱冠博(Kuan-Po Chiu)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 Ka/K-Band立方衛星通訊酬載設計、實現及驗證於MPSoC高通量軟體定義無線電平台
(The Design, Implementation and Verification of High-Throughput Software-Defined Radio with MPSoC as a Ka/K-Band Communication Payload for CubeSats)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著5G-NTN以及星鏈的發展,低軌道衛星通訊成為熱門的研究項目。而衛星對地端的閘口(Gateway)是連接用戶到中央伺服器的骨幹網路連接口,對資料傳輸帶寬有極大的要求,因此通常使用高頻率的波段作為載波。而Ka波段通訊酬載,在提供高速數據傳輸能力的同時,通常對功耗跟衛星載體空間有一定的要求,主要適用於較大的衛星。
因此在此研究中,專注於設計和實現一種專為CubeSat上的Ka波段微型軟體定義無線電(MSDR)。通訊協定符合DVB-S2標準,具有高傳輸容量以及可變傳輸率等特色,以因應不同的通道環境,另外也實現了線性階頻率調制(LSFM)模式,提供超低發射功率下的可靠傳輸。此外,該研究基於Xilinx MPSoC以及ADI ADRV9009作為基頻處理單元,並搭配Ka/K波段的升降頻以及功率放大器,模組化軟硬體設計可輕鬆應用於未來的任務。此SDR為低地球軌道(LEO)中的CubeSat星座提供寬頻通信的可能性。
摘要(英) Ka-Band communication payloads, enabling high-rate data transmission, typically require higher power consumption, are mostly more suitable for larger satellites. This research focuses on the design and the implementation of a miniature software-defined radio (MSDR) specifically tailored for Ka-band communication onboard CubeSats. The communication system aligns with the DVB-S2 standard for high transmission capacities, and incorporates the linear-step frequency modulation (LSFM) for robust transmission. Additionally, the modular software design can be easily adopted for future missions. The proposed Xilinx MPSoC-based SDR opens possibilities of broadband communication for CubeSat constellations in low Earth orbits (LEOs).
關鍵字(中) ★ LEO 低軌道衛星
★ 立方衛星
★ 通訊酬載
★ 軟體定義無線電
關鍵字(英) ★ LEO satellite communication
★ CubeSat
★ DVB-S2
★ high-throughput satellite
★ software-defined radio
★ Ka-Band
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 x
表目錄 xv
第一章、 緒論 1
1.1 研究動機與背景 1
1.2 衛星軌道 2
1.3 衛星通訊頻段 2
1.4 低軌道通訊衛星與5G Non-Terrestrial Networks 5
1.5 珍珠號立方衛星 7
1.6 調變 8
1.7 射頻訊號與數位資料 8
1.8 Software-defined Radio (SDR)軟體定義無線電 8
1.9 KCP硬體架構與規格 9
1.9.1 KCP硬體架構 10
1.9.2 KCP訊號介面及定義 11
1.9.3 KCP電性規格 12
1.9.4 KCP訊號功率規格 13
1.9.5 KCP機械介面規格與操作環境 13
1.10 Xilinx ZCU102工程板 15
1.11 Zynq UltraScale+ MPSoC 16
1.12 ADI ADRV9009 17
1.13 Xilinx PYNQ 19
第二章、 鏈路預算與通道效應 20
2.1 鏈路預算 20
2.1.1 概念 20
2.1.1 天線增益 20
2.1.2 訊噪比 21
2.1.3 接收機靈敏度 21
2.1.4 傳輸損失 22
2.1.5 環境及系統衰減 22
2.1.6 KCP鏈路分析 24
2.1.7 距離變化與動態衰減 26
2.1.8 頻率偏差 28
第三章、 DVB-S2規格介紹 30
3.1 DVB-S2發射機架構 30
3.2 Frame架構 32
3.2.1 BB Frame 32
3.2.2 FEC Frame 33
3.2.3 Bit mapping 35
3.2.4 PL Frame 36
3.2.5 SRRC Pulse Shaping 38
3.3 BCH碼 41
3.4 LDPC碼 41
3.4.1 線性區塊碼(Linear Block Code) 42
3.4.2 LDPC 摘要 43
3.4.3 DVB-S2 LDPC編碼 45
3.5 DVB-S2 收發機系統摘要 47
3.5.1 AGC 48
3.6 DVB-S2 接收機 48
3.6.1 Symbol Timing Synchronizer 49
3.6.1.1 原理 49
3.6.1.2 架構 51
3.6.1.3 實現 52
3.6.2 Carrier Frequency and Phase Synchronizer 53
3.6.2.1 原理 53
3.6.2.2 架構 54
3.6.2.1 實作 57
3.6.3 Frame Synchronizer 58
3.6.3.1 原理 58
3.6.3.2 架構 58
3.6.3.3 實作 59
第四章、 LSFM調變與發射機基頻電路實現 62
4.1 Chirp 通訊簡介 62
4.2 LFM訊號分析 62
4.3 LSFM訊號 63
4.4 LFM與LSFM訊號分析 65
4.5 LSFM發射機 67
4.6 LSFM接收機 68
第五章、 KCP數位電路系統整合 70
5.1 ADI ADRV9009 Interface 70
5.2 PS-PL Data I/O機制與Interrupt 73
5.3 Clock and Reset 76
第六章、 KCP軟韌體系統設計及作業系統 77
6.1 KCP作業系統開發序論 77
6.2 Linux作業系統架構摘要 79
6.3 公板開發環境之作業系統開發 82
6.4 KCP作業系統開發 86
6.4.1 中斷器實現結果 88
6.5 工程板收發機軟體開發 90
6.6 KCP飛控軟體開發 95
第七章、 KCP 封包、收發機參數定義及指令表 97
7.1 發射機參數表 97
7.2 模式指令表 98
7.3 STM32 Power Management Unit 指令表 99
7.4 R5 指令表 99
第八章、 KCP驗證與評估 102
8.1 資料驗證方法 102
8.2 600公尺對地面站測試 104
8.2.1 測試環境與配置 113
8.2.1 測試環境紀錄表 114
8.2.2 VSG測試結果 118
8.2.3 KCP測試結果-Single Tone 122
8.2.4 KCP測試結果-LSFM 123
8.2.5 KCP測試結果-DVB-S2 128
8.2.6 測試小結與討論 132
第九章、 結論 133
參考文獻 134
參考文獻 [1] European Space Agency, Satellite Frequency Bands, Accessed on 5 October 2019, https://www.esa.int/Applications/Connectivity_and_Secure_Communications/Satellite_frequency_bands
[2] Radiocommunication Sector of International Telecommunication Union, (2012), Attenuation by atmospheric gases, Recommendation ITU-R P.676-9
[3] Release 17 Description, 3GPP TR 21.917, 3rd Generation Partnership Project, 2020 https://www.3gpp.org/specifications-technologies/releases/release-17
[4] X. Lin, S. Rommer, S. Euler, E. A. Yavuz and R. S. Karlsson, "5G from Space: An Overview of 3GPP Non-Terrestrial Networks," in IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147-153, December 2021, doi: 10.1109/MCOMSTD.011.2100038
[5] N. P. Lawrence, B. W. . -H. Ng, H. J. Hansen and D. Abbott, "5G Terrestrial Networks: Mobility and Coverage—Solution in Three Dimensions," in IEEE Access, vol. 5, pp. 8064-8093, 2017, doi: 10.1109/ACCESS.2017.2693375
[6] Phillip M. Feldman, Polarization Mismatch Loss Calculator, 2021, https://phillipmfeldman.org/Engineering/pol_mismatch_loss.html
[7] The European Telecommunications Standards Institute. (2014). DVB-S2 EN 302 307-1 V1.4.1 (2014-11). Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 1: DVB-S2
[8] Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 2: DVB-S2 Extensions (DVB-S2X), EN 302 307-2 V1.1.1, ETSI, 2015-02.
[9] Zhao, K., Zhao, W., Sun, H., Zhang, T., Zhang, X., & Zheng, N. (2013). LDPC-in-SSD: making advanced error correction codes work effectively in solid state drives. USENIX Conference on File and Storage Technologies.
[10] Cakaj, S., Kamo, B., Koliçi, V., & Shurdi, O. (2011). The Range and Horizon Plane Simulation for Ground Stations of Low Earth Orbiting (LEO) Satellites. Int. J. Commun. Netw. Syst. Sci., 4, 585-589.
[11] Ferré, Guillaume and Audrey Giremus. “LoRa Physical Layer Principle and Performance Analysis.” ICECS 2018 25th IEEE International Conference on Electronics Circuits and Systems, 2018, doi: 10.1109/ICECS.2018.8617880.
[12] Yang, Z., W. Xiong and Y. Zhao, "Software Defined Radio Hardware Design on ZYNQ for Signal Processing System," 2019 8th International Symposium on Next Generation Electronics (ISNE), pp. 1-3, 2019, doi: 10.1109/ISNE.2019.8896380.
[13] Kumar, N., M. Rawat and K. Rawat, "Software-Defined Radio Transceiver Design Using FPGA-Based System-on-Chip Embedded Platform With Adaptive Digital Predistortion," in IEEE Access, vol. 8, pp. 214882-214893, 2020, doi: 10.1109/ACCESS.2020.3041463.
[14] Weiss, Lora G. "Wavelets and Wideband Correlation Processing". IEEE Signal Processing Magazine, pp. 13–32, Jan 1994.
[15] Najmi, “The Wigner Distribution: A Time-frequency Analysis Tool”, Johns Hopkins APL Technical Dig. (Applied Physics Laboratory), Vol. 18, No. 1., pp. 134-139, 1994.
[16] Chen, Y.M., S.C. Liao and Y.C. Chen. “Implementation of a Low-Rate Linear Step FM Transceiver on a Software Defined Radio Platform”. Wireless and Satellite Systems. WiSATS 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 186. pp 47–54, 2017, https://doi.org/10.1007/978-3-319-53850-1_6
[17] linux-kernel-labs.github.io, The Linux Kernel, https://www.form3.tech/blog/engineering/linux-fundamentals-user-kernel-space
[18] Wikiwand, Protection ring, https://www.wikiwand.com/en/Protection_ring
[19] Devicetree.org, “Devicetree Specification Release v0.4”, June 28, 2023, https://www.devicetree.org/specifications
[20] J. D. Anderson, J. C. Leavitt and M. J. Wirthlin, "Neutron Radiation Beam Results for the Xilinx UltraScale+ MPSoC," 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa, HI, USA, 2018, pp. 1-7, doi: 10.1109/NSREC.2018.8584297.
[21] C. M. Fuchs et al., "A Fault-Tolerant MPSoC For CubeSats," 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Noordwijk, Netherlands, 2019, pp. 1-6, doi: 10.1109/DFT.2019.8875417.
[22] Xilinx, Libmetal and OpenAMP User Guide, UG1186 (v2019.1) May 22, 2019
[23] Etienne Tisserand, Yves Berviller. Design and implementation of a new digital automatic gain control. Electronics Letters, 2016, 52 (22), pp.1847 - 1849. ff10.1049/el.2016.1398ff. ffhal-01397371f
[24] Qasim Chaudhari, Wireless Communications from the Ground Up v2.4, 2018
[25] Antiufrieva, L., K. Iansitov, A. Ivchenko and A. Dvorkovich, "Features of Frequency Synchronization Algorithms DVB-S2(X) for LEO Satellites," 2021 23rd International Conference on Digital Signal Processing and its Applications (DSPA), pp. 1-4, 2021, doi: 10.1109/DSPA51283.2021.9535822.
[26] Park, J. W., Hyoung Jin Yun, Myung Hoon Sunwoo, Pansoo Kim and Dae-Ig Chang, "Efficient coarse frequency synchronizer using serial correlator for DVB-S2," 2008 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1520-1523, 2008, doi: 10.1109/ISCAS.2008.4541719.
[27] Matlab, DVB-S2 HDL PL Header Recovery, https://www.mathworks.com/help/wireless-hdl/ug/dvb-s2-hdl-pl-header-recovery.html
[28] Liao, X. -Q. and Y. -M. Chen, "An Efficient Joint Frame and Physical Layer Signaling Code Detection Method for DVB-S2," in IEEE Access, vol. 12, pp. 41727-41733, 2024, doi: 10.1109/ACCESS.2024.3378292
指導教授 林映岑 陳逸民(Ying-Tsen Lin Yih-Min Chen) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明