博碩士論文 111324079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:3.23.101.52
姓名 謝興樺(Hsing-Hua Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用廢棄PET衍生配體調控合成hcp UiO-66應用於化學戰劑模擬劑降解
(Modulated Synthesis of hcp UiO-66 Employing Waste PET-Derived Ligands Applied to Chemical Warfare Agent Simulant Degradation)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 化學戰劑(CWAs)在發生戰爭期間時對人類造成嚴重地威脅及傷害。傳統過濾技術蘊含著幾項缺點,包含飽和後的次級排放、長期活化的低容量以及最終的處置困難。因此,對於利用金屬有機框架材料(MOFs)、金屬氧化物、聚氧化金屬(POMs)來催化和降解化學戰劑的相關領域研究受到高度重視。其中,金屬有機框架材料是一類擁有著超高表面積和孔隙率特點的新型材料。已有文獻顯示,基於鋯金屬的有機框架材料能夠有效地使用在催化化學戰劑及其模擬物上。
本研究使用UiO-66來降解沙林模擬物二氯乙基磷酸酯(DCP),這已被證實是一種合適的模擬劑。此外,使用廢棄的寶特瓶碎片來製備出具有不同於原始晶體結構的UiO-66,即六方最密堆積(hcp) UiO-66。在這裡進一步探索利用ZrOCl2·8H2O作為新的金屬鹽來源合成hcp UiO-66的可能性,並調節丙酮/甲酸的比例來控制缺陷程度。從XRD結果可以看出,hcp UiO-66能夠在全酸的合成環境之下成功地被合成出。此外,從SEM圖中能夠觀察到hcp UiO-66的晶體形狀與原始的八面體極為不同,呈現六角柱型態。最後,利用原位 31P-NMR 測定MOF材料在含有DCP的氘溶劑中降解性能,由於其良好的材料特性,原始的UiO-66和 hcp 系列的UiO-66半衰期分別約為 18 分鐘和 22 分鐘。
摘要(英) Chemical warfare agents (CWAs) pose a harmful threat in the event of war. Traditional filtration has several disadvantages, including secondary emission after saturation, low capacity for long-term activation, and ultimate disposal. Therefore, research on the degradation and catalysis of CWAs materials using metal oxides, polyoxometalates (POMs), and metal-organic frameworks (MOFs) have been highly motivated. In particular, MOFs are a novel class of materials with high porosity and ultra-high specific surface areas. Some studies have already demonstrated that Zr-based MOF can effectively catalyze CWAs and their simulants.
In this work, UiO-66 was used to degrade the sarin mimic diethyl chlorophosphate (DCP), shown to be a suitable simulant. Additionally, waste PET were used to synthesize a different crystal structure UiO-66, the hexagonal closed-packed (hcp). We explored another possibility utilizing ZrOCl2·8H2O as the new metal salt to synthesize hcp UiO-66 and tuned the acetone/formic acid ratio to control the defects. XRD results indicated that UiO-66 with hcp characteristics was successfully formed in a total acid synthesis environment. It can be observed that the morphology of hcp UiO-66 represent hexagonal shapes from SEM. The half-lives of the original and hcp series were approximately 18 min and 22 min, respectively, as determined by in situ 31P-NMR, owing to their favorable material properties.
關鍵字(中) ★ 化學戰劑降解
★ 沙林
★ 綠色合成
★ hcp UiO-66
關鍵字(英) ★ Degradation of chemical warfare agent
★ sarin
★ green synthesis
★ hcp UiO-66
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1. Background 1
1.2. Review of Relevant literature 5
1.2.1. Application of MOFs in the degradation of chemical warfare agents 5
1.2.2. Synthesis and Properties of UiO-66 and its Derivatives 8
1.2.3. Reuse of polyethylene terephthalate (PET) as MOF precursor 11
1.3. Motivation 15
Chapter 2 Experimental 19
2.1. Materials and Reagents 19
2.2. Instruments 19
2.3. Analysis instrument and Characterization 20
2.3.1. Fourier-transform infrared spectroscopy (FTIR) 20
2.3.2. X-ray diffraction (XRD) 21
2.3.3. Scanning electron microscopy (SEM) 22
2.3.4. Dynamic light scattering (DLS) 23
2.3.5. Thermogravimetric analysis (TGA) 24
2.3.6. Surface area and Porosity analysis 25
2.3.7. In Situ Nuclear magnetic resonance spectroscopy (NMR) 27
2.4. Synthesis of metal organic framework 29
2.4.1. Synthesis of the UiO-66 29
2.4.2. Synthesis of the hcp-UiO-66 from ZrCl4 and ZrOCl2·8H2O 30
Chapter 3 Results and Discussion 32
3.1. Characterization of pristine- and hcp series of UiO-66 32
3.1.1. X-ray diffraction pattern 32
3.1.2. Fourier-transform infrared spectrum 36
3.1.3. Morphology and Particle Size 38
3.2. Defects quantification and Surface area 43
3.2.1. Thermogravimetric analysis 43
3.2.2. N2 sorption and Specific surface area 46
3.2.3. Pore size distribution 49
3.3. Degradation performance and Kinetic study 53
Chapter 4 Conclusions 63
Chapter 5 Future works 64
References 65
參考文獻 1. Peterson, G.W. and G.W. Wagner, Detoxification of chemical warfare agents by CuBTC. Journal of Porous Materials, 2014. 21(2): p. 121-126.
2. Rose, S.P.R., D. Pavett, and B.P. Library, CBW: Chemical and Biological Warfare. 1969: Beacon Press.
3. Kim, K., et al., Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 2011. 111(9): p. 5345-5403.
4. Munro, N., Toxicity of the Organophosphate Chemical Warfare Agents GA, GB, and VX: Implications for Public Protection. Environmental Health Perspectives, 1994. 102(1): p. 18-37.
5. Costanzi, S., J.-H. Machado, and M. Mitchell, Nerve Agents: What They Are, How They Work, How to Counter Them. ACS Chemical Neuroscience, 2018. 9(5): p. 873-885.
6. Das, M.K., et al., Fluorometric detection of a chemical warfare agent mimic (DCP) using a simple hydroxybenzothiazole–diaminomaleonitrile based chemodosimeter. New Journal of Chemistry, 2023. 47(1): p. 250-257.
7. Saxena, A., et al., Kinetics of In-situ Degradation of Nerve Agent Simulants and Sarin on Carbon with and without Impregnants. Carbon letters, 2005. 6: p. 158-165.
8. Maji, A., et al., A chemodosimetric approach for the visual detection of nerve agent simulant diethyl chlorophosphate (DCP) in liquid and vapour phase. Analytical Methods, 2023. 15(46): p. 6417-6424.
9. Agrawal, M., et al., How Useful Are Common Simulants of Chemical Warfare Agents at Predicting Adsorption Behavior? The Journal of Physical Chemistry C, 2018. 122(45): p. 26061-26069.
10. Patil, L.A., et al., Sensing of 2-chloroethyl ethyl sulfide (2-CEES) – a CWA simulant – using pure and platinum doped nanostructured CdSnO3 thin films prepared from ultrasonic spray pyrolysis technique. Sensors and Actuators B: Chemical, 2011. 160(1): p. 234-243.
11. Tuccitto, N., et al., Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents. ACS Applied Nano Materials, 2020. 3(8): p. 8182-8191.
12. Patil, L.A., et al., Improved 2-CEES sensing performance of spray pyrolized Ru-CdSnO3 nanostructured thin films. Sensors and Actuators B: Chemical, 2014. 191: p. 130-136.
13. Tomchenko, A.A., G.P. Harmer, and B.T. Marquis, Detection of chemical warfare agents using nanostructured metal oxide sensors. Sensors and Actuators B: Chemical, 2005. 108(1): p. 41-55.
14. Ramirez-Cedeno, M.L., et al., Remote Detection of Hazardous Liquids Concealed in Glass and Plastic Containers. IEEE Sensors Journal, 2010. 10(3): p. 693-698.
15. Mondloch, J.E., et al., Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015. 14(5): p. 512-516.
16. Giannakoudakis, D.A., J.K. Mitchell, and T.J. Bandosz, Reactive adsorption of mustard gas surrogate on zirconium (hydr)oxide/graphite oxide composites: the role of surface and chemical features. Journal of Materials Chemistry A, 2016. 4(3): p. 1008-1019.
17. Verma, M., R. Chandra, and V.K. Gupta, Synthesis of magnetron sputtered WO3 nanoparticles-degradation of 2-chloroethyl ethyl sulfide and dimethyl methyl phosphonate. Journal of Colloid and Interface Science, 2015. 453: p. 60-68.
18. López-Maya, E., et al., Textile/Metal–Organic-Framework Composites as Self-Detoxifying Filters for Chemical-Warfare Agents. Angewandte Chemie International Edition, 2015. 54(23): p. 6790-6794.
19. Vernekar, A.A., T. Das, and G. Mugesh, Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angewandte Chemie International Edition, 2016. 55(4): p. 1412-1416.
20. Sun, B., A.V. Vorontsov, and P.G. Smirniotis, Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2. Journal of Hazardous Materials, 2011. 186(2): p. 1147-1153.
21. Asha, P., M. Sinha, and S. Mandal, Effective removal of chemical warfare agent simulants using water stable metal–organic frameworks: mechanistic study and structure–property correlation. RSC Advances, 2017. 7(11): p. 6691-6696.
22. Rowsell, J.L.C. and O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004. 73(1): p. 3-14.
23. Maurin, G., et al., The new age of MOFs and of their porous-related solids. Chemical Society Reviews, 2017. 46(11): p. 3104-3107.
24. Zhou, L., et al., Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source. Microporous and Mesoporous Materials, 2019. 290.
25. Yuan, S., et al., Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018. 30(37): p. 1704303.
26. Liu, Y., et al., Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017. 346: p. 101-111.
27. Kalaj, M., et al., Multiple functional groups in UiO-66 improve chemical warfare agent simulant degradation. Chemical Communications, 2019. 55(37): p. 5367-5370.
28. Ji, P., et al., Single-Site Cobalt Catalysts at New Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides. Journal of the American Chemical Society, 2017. 139(20): p. 7004-7011.
29. Ermer, M., et al., Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor. Dalton Trans, 2018. 47(41): p. 14426-14430.
30. Kubowicz, S. and A.M. Booth, Biodegradability of Plastics: Challenges and Misconceptions. Environmental Science & Technology, 2017. 51(21): p. 12058-12060.
31. Ragon, F., et al., In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorganic Chemistry, 2014. 53(5): p. 2491-2500.
32. Okumura, T., et al., The Tokyo subway sarin attack—lessons learned. Toxicology and Applied Pharmacology, 2005. 207(2, Supplement): p. 471-476.
33. Roy, A., et al., Degradation of sarin, DEClP and DECNP over Cu-BTC metal organic framework. Journal of Porous Materials, 2013. 20(5): p. 1103-1109.
34. Liang, H., et al., Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters. ACS Appl Mater Interfaces, 2018. 10(24): p. 20396-20403.
35. Roy, A., et al., Kinetics of degradation of sulfur mustard and sarin simulants on HKUST-1 metal organic framework. Dalton Transactions, 2012. 41(40): p. 12346-12348.
36. Wu, S., et al., Catalytic degradation of CWAs with MOF-808 and PCN-222: Toward practical application. Journal of Chemical Research, 2022. 46(6): p. 17475198221138061.
37. Dhakshinamoorthy, A., et al., Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 2019. 11(3): p. 899-923.
38. Biswas, S. and P. Van Der Voort, A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties. European Journal of Inorganic Chemistry, 2013. 2013(12): p. 2154-2160.
39. Gibbons, B., et al., Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorganic Chemistry, 2021. 60(21): p. 16378-16387.
40. Van Le, D., et al., Synthesis of a UiO-66/g-C3N4 composite using terephthalic acid obtained from waste plastic for the photocatalytic degradation of the chemical warfare agent simulant, methyl paraoxon. RSC Advances, 2022. 12(35): p. 22367-22376.
41. Cliffe, M.J., et al., Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework. Journal of the American Chemical Society, 2017. 139(15): p. 5397-5404.
42. Senthil Raja, D., et al., Synthesis of mixed ligand and pillared paddlewheel MOFs using waste polyethylene terephthalate material as sustainable ligand source. Microporous and Mesoporous Materials, 2016. 231: p. 186-191.
43. Ubaidullah, M., et al., Fabrication of highly porous N-doped mesoporous carbon using waste polyethylene terephthalate bottle-based MOF-5 for high performance supercapacitor. Journal of Energy Storage, 2021. 33: p. 102125.
44. Lo, S.-H., et al., Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016. 45(23): p. 9565-9573.
45. Wang, Y., et al., Green Synthesis of CoZn-Based Metal–Organic Framework (CoZn-MOF) from Waste Polyethylene Terephthalate Plastic As a High-Performance Anode for Lithium-Ion Battery Applications. ACS Applied Materials & Interfaces, 2024. 16(1): p. 819-832.
46. Dyosiba, X., et al., Feasibility of Varied Polyethylene Terephthalate Wastes as a Linker Source in Metal–Organic Framework UiO-66(Zr) Synthesis. Industrial & Engineering Chemistry Research, 2019. 58(36): p. 17010-17016.
47. Chen, X., et al., Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal–Organic Framework hcp UiO-66. ACS Catalysis, 2020. 10(5): p. 2906-2914.
48. Joly, F., et al., Optimization of the synthesis of UiO-66(Zr) in ionic liquids. Microporous and Mesoporous Materials, 2019. 288.
49. Moll, B., et al., Modulated synthesis of thiol-functionalized fcu and hcp UiO-66(Zr) for the removal of silver(i) ions from water. Materials Advances, 2021. 2(2): p. 804-812.
50. Lee, J., et al., Mixed-matrix membrane reactors for the destruction of toxic chemicals. Journal of Membrane Science, 2020. 605: p. 118112.
51. Zhao, J., et al., Ultra-Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie International Edition, 2016. 55(42): p. 13224-13228.
52. Fang, X., et al., High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms. Applied Surface Science, 2020. 518.
53. Peh, S.B., et al., Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr(12) metal-organic frameworks. Dalton Trans, 2019. 48(21): p. 7069-7073.
54. Clark, C.A., et al., Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate. ACS Sustainable Chemistry & Engineering, 2019. 7(7): p. 6619-6628.
55. Sun, X., et al., Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chemical Engineering Journal, 2014. 239: p. 226-232.
56. Zeleňák, V., et al., Layer-pillared zinc(II) metal–organic framework built from 4,4′-azo(bis)pyridine and 1,4-BDC. Microporous and Mesoporous Materials, 2010. 129(3): p. 354-359.
57. Nakamoto, K., Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. 2009: John Wiley & Sons.
58. Han, Y., et al., Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015. 17(33): p. 6434-6440.
59. Ermer, M., et al., UiO‐66 and hcp UiO‐66 Catalysts Synthesized from Ionic Liquids as Linker Precursors. ChemistryOpen, 2020. 10(2): p. 233-242.
60. Shearer, G.C., et al., Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
61. Slater, B., et al., Missing Linker Defects in a Homochiral Metal–Organic Framework: Tuning the Chiral Separation Capacity. Journal of the American Chemical Society, 2017. 139(50): p. 18322-18327.
62. Shearer, G.C., et al., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
63. Willems, T.F., et al., Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials, 2012. 149(1): p. 134-141.
64. Sava Gallis, D.F., et al., Efficient MOF-based degradation of organophosphorus compounds in non-aqueous environments. Journal of Materials Chemistry A, 2018. 6(7): p. 3038-3045.
65. Alam, T.M., et al., Sub-Equimolar Hydrolysis and Condensation of Organophosphates. ChemistrySelect, 2016. 1(11): p. 2698-2705.
66. Chen, R., et al., Layer-by-Layer Fabrication of Core–Shell Fe3O4@UiO-66-NH2 with High Catalytic Reactivity toward the Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & Interfaces, 2019. 11(46): p. 43156-43165.
67. Mahato, T.H., et al., Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide. Microporous and Mesoporous Materials, 2010. 132(1): p. 15-21.
指導教授 張博凱 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明