博碩士論文 111623002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.119.28.213
姓名 江澄穎(Cheng-Ying Chiang)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 爆發型與限制型閃焰前之活躍區足點電漿特徵研究
(Plasma Characteristics of Active Region Footpoints Before Eruptive and Confined Flares)
相關論文
★ 臺灣銀行業財務績效、內部人持股及董監事薪酬重要影響因素研析★ 磁雲結構與其起始區域之多點觀測分析
★ 使用SDO / AIA觀測閃焰亮帶之運動情形★ 強烈太陽閃焰之電場估算及其與X射線之關係
★ 太陽閃焰硬X射線與微波觀測結合雙注入電子群之非熱輻射模擬研究★ IRIS Mg II譜線之太陽閃焰色球加熱現象研究
★ 太陽閃焰爆發前準週期脈衝之多波段觀測分析★ 第三型無線電波爆在不同太陽閃焰相位之研究
★ STEREO衛星之太陽高能質子特性與其加速源分析★ 日冕洞演化與高速太陽風之關係
★ 內太陽圈行星際三型太陽無線電波爆之特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 太陽閃焰與日冕物質拋射是發生於太陽活躍區中、且普遍被認為是由於磁場重組造成的重要爆發現象,但並不一定伴隨出現,而本研究將爆發現象分為有伴隨日冕物質拋射的爆發型閃焰,與沒有伴隨日冕物質拋射的限制型閃焰,並比較兩種類型閃焰的差異。過往的研究大多著重在討論兩種閃焰事件的磁場特性,本研究則希望探討過往鮮少討論的電漿表現,且參考Imada et al. (2014)與Harra et al. (2009)的研究結果,針對閃焰發生前活躍區足點的特徵變化進行分析。本研究使用SDO/AIA的影像資料與Hinode/EIS的光譜資料,分別以差分發射計量分析與光譜分析,討論M1.8爆發型閃焰的活躍區AR12473,以及發生C9.9限制型閃焰的活躍區AR11158中共四個足點區域的都卜勒速度、非熱速率與密度等電漿相關性質,在兩種閃焰發生前各自有何變化。從分析結果可歸納出兩種閃焰事件確實有不同的閃焰前特徵:爆發型閃焰發生前,其活躍區足點的上升電漿流速度、非熱速率有增強之趨勢,且密度有所下降;而限制型閃焰發生前,活躍區足點的上升電漿流速沒有明顯增強,甚至有減弱之趨勢,且密度在限制型閃焰前有明顯的增加。為了說明本研究之結果,我們提出以閃焰前活躍區演化相關活動,如日冕環擴張等,提供可能的物理圖像解釋來說明目前的研究結果,希望能對太陽爆發事件能有更進一步的理解。
摘要(英) Solar flares and coronal mass ejections (CMEs) are significant eruptions occurring in solar active regions and are generally believed to be caused by magnetic reconfiguration. However, these activities do not always occur simultaneously, so eruptions are categorized into eruptive flares, which are accompanied by CMEs, and confined flares, which are not, in this paper. Most research has focused on the magnetic properties to discuss the differences between the two types of flares. In this study, following the results of Imada et al. (2014) and Harra et al. (2009), the plasma characteristic changes in footpoints of active regions before the flare occurrences are targeted to the main purpose, which has been less discussed. To investigate both types of flares, imaging data from SDO/AIA and spectral data from Hinode/EIS, applying differential emission measure (DEM) analysis and spectral analysis, respectively, are utilized to discuss the Doppler velocity, non-thermal speed, and density of plasma in four footpoint regions within the active regions AR12473, associated with an M1.8 eruptive flare, and AR11158, associated with a C9.9 confined flare. The results suggest distinct pre-flare characteristics for the two flare events: before eruptive flares, there is a trend of increasing upward plasma flow velocity and non-thermal speed in the footpoints of the active region, along with a decrease in density; whereas before confined flares, the upward plasma flow velocity does not significantly increase and may even decrease, with a noticeable increase in density. To explain these findings, a possible scenario related to pre-flare active region evolution, such as coronal loop expansion, is proposed in this paper, aiming at a more complete understanding of solar eruptions.
關鍵字(中) ★ 太陽爆發活動
★ 日冕特徵
★ 太陽閃焰
★ 日冕物質拋射
★ 極紫外線觀測
關鍵字(英) ★ Solar activity
★ Solar coronal
★ Solar Flare
★ Coronal Mass Ejection (CME)
★ EUV radiation
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii

第1章 緒論 1
1-1 太陽結構與大氣 1
1-2 太陽活躍區 3
1-3 太陽閃焰與日冕物質拋射 4
1-4 文獻回顧與研究動機 8

第2章 觀測儀器 11
2-1 HINODE 11
2-1-1 EUV imaging spectrometer (EIS) 12
2-2 SOLAR DYNAMIC OBSERVATORY (SDO) 15
2-2-1 Helioseismic and Magnetic Imager (HMI) 16
2-2-2 Atmospheric Imaging Assembly (AIA) 17
2-3 GEOSTATIONARY OPERATIONAL ENVIRONMENTAL SATELLITE (GOES) 19

第3章 研究方法 21
3-1 分析事件 21
3-1-1 事件選擇 21
3-1-2 分析區域選擇 24
3-2 光譜分析 27
3-2-1 資料校正與擬合 27
3-2-2 都卜勒速度(Doppler Velocity) 28
3-2-3 非熱譜線寬(Nonthermal Line Width) 29
3-3 差分發射計量分析(DIFFERENTIAL EMISSION MEASURE ANALYSIS) 31
3-3-1 正則化最大概似估計(Regularized Maximum Likelihood Estimation) 33

第4章 事件分析結果 37
4-1 M1.8 爆發型閃焰 38
4-1-1 光譜分析結果 39
4-1-2 DEM分析結果 42
4-2 C9.9 限制型閃焰 45
4-2-1 光譜分析結果 46
4-2-2 DEM分析結果 51

第5章 討論 55
5-1 上升流速率與非熱速率之時變特徵 55
5-2 發射計量之時變特徵 60
5-3 觀測結果之物理圖像解釋 62

第6章 結論與未來展望 64

參考文獻 65
參考文獻 Aly, J. J. (1984). On some properties of force-free magnetic fields in infinite regions of space. Astrophysical Journal, 283, 349-362.

Aly, J. J. (1991). How Much Energy Can Be Stored in a Three-dimensional Force-free Magnetic Field? Astrophysical Journal Letters, 375.

Antiochos, S. K., Devore, C. R., & Klimchuk, J. A. (1999). A Model for Solar Coronal Mass Ejections. The Astrophysical Journal, 510(1), 485-493.

Aschwanden, M. J., & Boerner, P. (2011). SOLAR CORONA LOOP STUDIES WITH THE ATMOSPHERIC IMAGING ASSEMBLY. I. CROSS-SECTIONAL TEMPERATURE STRUCTURE. The Astrophysical Journal, 732(2), 81.

Aschwanden, M. J., Boerner, P., Ryan, D., Caspi, A., McTiernan, J. M., & Warren, H. P. (2015). GLOBAL ENERGETICS OF SOLAR FLARES. II. THERMAL ENERGIES. The Astrophysical Journal, 802(1), 53.

Aschwanden, M. J., Boerner, P., Schrijver, C. J., & Malanushenko, A. (2013). Automated Temperature and Emission Measure Analysis of Coronal Loops and Active Regions Observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). Solar Physics, 283(1), 5-30.

Carmichael, H. (1964). A Process for Flares. The Physics of Solar Flares, 451.

Del Zanna, G. (2013). The multi-thermal emission in solar active regions. Astronomy & Astrophysics, 558, A73.

Del Zanna, G., & Mason, H. E. (2003). Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops. Astronomy & Astrophysics, 406(3), 1089-1103.

Harra, L. K., Williams, D. R., Wallace, A. J., Magara, T., Hara, H., Tsuneta, S., Sterling, A. C., & Doschek, G. A. (2009). CORONAL NONTHERMAL VELOCITY FOLLOWING HELICITY INJECTION BEFORE AN X-CLASS FLARE. The Astrophysical Journal, 691(2), L99-L102.

Hirayama, T. (1974). Theoretical Model of Flares and Prominences. I: Evaporating Flare Model. Solar Physics, 34(2), 323-338.

Imada, S., Bamba, Y., & Kusano, K. (2014). Coronal behavior before the large flare onset. Publications of the Astronomical Society of Japan, 66(SP1), S17.

Kamio, S., Hara, H., Watanabe, T., Fredvik, T., & Hansteen, V. H. (2010). Modeling of EIS Spectrum Drift from Instrumental Temperatures. Solar Physics, 266(1), 209-223.

Kopp, R. A., & Pneuman, G. W. (1976). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics, 50(1), 85-98.

Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., Edwards, C. G., Friedlaender, F. M., Heyman, G. F., Hurlburt, N. E., Katz, N. L., Kushner, G. D., Levay, M., Lindgren, R. W., Mathur, D. P., McFeaters, E. L., Mitchell, S., Rehse, R. A., . . . Waltham, N. (2012). The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2), 17-40.

Li, T., Chen, A., Hou, Y., Veronig, A. M., Yang, S., & Zhang, J. (2021). Magnetic Flux and Magnetic Nonpotentiality of Active Regions in Eruptive and Confined Solar Flares. The Astrophysical Journal Letters, 917(2), L29.

Liu, L., Wang, Y., Wang, J., Shen, C., Ye, P., Liu, R., Chen, J., Zhang, Q., & Wang, S. (2016). WHY IS A FLARE-RICH ACTIVE REGION CME-POOR? The Astrophysical Journal, 826(2), 119.

Massa, P., Emslie, A. G., Hannah, I. G., & Kontar, E. P. (2023). Robust construction of differential emission measure profiles using a regularized maximum likelihood method. Astronomy & Astrophysics, 672, A120.

Mulay, S. M., Zanna, G. D., & Mason, H. (2017). Cool and hot emission in a recurring active region jet. Astronomy & Astrophysics, 606, A4.

Priest, E. (2014). Magnetohydrodynamics of the Sun. Cambridge University Press.

Saqri, J., Veronig, A. M., Heinemann, S. G., Hofmeister, S. J., Temmer, M., Dissauer, K., & Su, Y. (2020). Differential Emission Measure Plasma Diagnostics of a Long-Lived Coronal Hole. Solar Physics, 295(1).

Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J., Tarbell, T. D., & Tomczyk, S. (2012). The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2), 207-227.

Sturrock, P. A. (1966). Model of the High-Energy Phase of Solar Flares. Nature, 211(5050), 695-697.

Sturrock, P. A. (1991). Maximum Energy of Semi-infinite Magnetic Field Configurations. Astrophysical Journal, 380.

Young, P. (2021). EIS_AUTO_FIT and SPEC_GAUSS_EIS: Gaussian fitting routines for the Hinode/EIS mission. In EIS SOFTWARE NOTE.

Young, P. R., Doschek, G. A., Warren, H. P., & Hara, H. (2013). PROPERTIES OF A SOLAR FLARE KERNEL OBSERVED BYHINODEANDSDO. The Astrophysical Journal, 766(2), 127.
指導教授 楊雅惠(Ya-Hui Yang) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明