參考文獻 |
1. US CDC. Antibiotic Resistance Threats in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/.
2. McKenna, M., Antibiotic resistance: the last resort. Nature 2013, 499 (7459), 394-6.
3. Huan, Y.; Kong, Q.; Mou, H.; Yi, H., Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020, 11, 582779.
4. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G., Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021, 14 (5).
5. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 1987, 84 (15), 5449-53.
6. Mookherjee, N.; Anderson, M. A.; Haagsman, H. P.; Davidson, D. J., Antimicrobial host defence peptides: functions and clinical potential. Nature reviews Drug discovery 2020, 19 (5), 311-332.
7. Waghu, F. H.; Barai, R. S.; Gurung, P.; Idicula-Thomas, S., CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2016, 44 (D1), D1094-7.
8. Wang, G.; Li, X.; Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016, 44 (D1), D1087-93.
9. Pirtskhalava, M.; Amstrong, A. A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D. E.; Tartakovsky, M., DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 2021, 49 (D1), D288-D297.
10. Chen, C. H.; Starr, C. G.; Troendle, E.; Wiedman, G.; Wimley, W. C.; Ulmschneider, J. P.; Ulmschneider, M. B., Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc 2019, 141 (12), 4839-4848.
11. Brogden, K., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology 2005, 3, 238-50.
12. Epand, R. M.; Vogel, H. J., Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462 (1), 11-28.
13. Bechinger, B., The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462 (1), 157-183.
14. Torres, M. D. T.; Cao, J.; Franco, O. L.; Lu, T. K.; de la Fuente-Nunez, C., Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS Nano 2021, 15 (2), 2143-2164.
15. Alessandri, R.; Barnoud, J.; Gertsen, A. S.; Patmanidis, I.; de Vries, A. H.; Souza, P. C. T.; Marrink, S. J., Martini 3 Coarse‐Grained Force Field: Small Molecules. Advanced Theory and Simulations 2021, 5 (1).
16. Souza, P. C. T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grunewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B. M. H.; Wassenaar, T. A.; Kroon, P. C.; Melcr, J.; Nieto, V.; Corradi, V.; Khan, H. M.; Domanski, J.; Javanainen, M.; Martinez-Seara, H.; Reuter, N.; Best, R. B.; Vattulainen, I.; Monticelli, L.; Periole, X.; Tieleman, D. P.; de Vries, A. H.; Marrink, S. J., Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 2021, 18 (4), 382-388.
17. Herzog, F. A.; Braun, L.; Schoen, I.; Vogel, V., Improved side chain dynamics in MARTINI simulations of protein–lipid interfaces. Journal of chemical theory and computation 2016, 12 (5), 2446-2458.
18. Infield, D. T.; Rasouli, A.; Galles, G. D.; Chipot, C.; Tajkhorshid, E.; Ahern, C. A., Cation-pi Interactions and their Functional Roles in Membrane Proteins. J Mol Biol 2021, 433 (17), 167035.
19. Srinivasan, S.; Zoni, V.; Vanni, S., Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein-membrane interactions. Biophysical Journal 2021, 120 (3), 232a.
20. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D., Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583-589.
21. Torrie, G. M.; Valleau, J. P., Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974, 28 (4), 578-581.
22. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977, 23 (2), 187-199.
23. Popot, J.-L.; Engelman, D. M., Helical membrane protein folding, stability, and evolution. Annual review of biochemistry 2000, 69 (1), 881-922.
24. Liu, H.; Fu, H.; Shao, X.; Cai, W.; Chipot, C., Accurate Description of Cation-pi Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost. J Chem Theory Comput 2020, 16 (10), 6397-6407.
25. Polyansky, A. A.; Ramaswamy, R.; Volynsky, P. E.; Sbalzarini, I. F.; Marrink, S. J.; Efremov, R. G., Antimicrobial Peptides Induce Growth of Phosphatidylglycerol Domains in a Model Bacterial Membrane. The Journal of Physical Chemistry Letters 2010, 1 (20), 3108-3111.
26. Neale, C.; Bennett, W. D.; Tieleman, D. P.; Pomes, R., Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers. Journal of Chemical Theory and Computation 2011, 7 (12), 4175-4188.
27. Paloncýová, M. t.; Berka, K.; Otyepka, M., Convergence of free energy profile of coumarin in lipid bilayer. Journal of chemical theory and computation 2012, 8 (4), 1200-1211.
28. Wang, Y.; Hu, D.; Wei, D., Transmembrane permeation mechanism of charged methyl guanidine. Journal of chemical theory and computation 2014, 10 (4), 1717-1726.
29. Jambeck, J. P.; Lyubartsev, A. P., Exploring the free energy landscape of solutes embedded in lipid bilayers. The Journal of Physical Chemistry Letters 2013, 4 (11), 1781-1787.
30. Neale, C.; Madill, C.; Rauscher, S.; Pomes, R., Accelerating convergence in molecular dynamics simulations of solutes in lipid membranes by conducting a random walk along the bilayer normal. Journal of Chemical Theory and Computation 2013, 9 (8), 3686-3703.
31. Beranova, L.; Cwiklik, L.; Jurkiewicz, P.; Hof, M.; Jungwirth, P., Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir 2010, 26 (9), 6140-6144.
32. Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H., DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 2022, 50 (D1), D488-D496.
33. Capecchi, A.; Cai, X.; Personne, H.; Köhler, T.; van Delden, C.; Reymond, J.-L., Machine learning designs non-hemolytic antimicrobial peptides. Chemical Science 2021, 12 (26), 9221-9232.
34. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28 (23), 3150-3152.
35. Singh, O.; Hsu, W. L.; Su, E. C., Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics 2021, 22 (1), 389.
36. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25.
37. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. Journal of molecular graphics 1996, 14 (1), 33-38.
38. Guixa-Gonzalez, R.; Rodriguez-Espigares, I.; Ramirez-Anguita, J. M.; Carrio-Gaspar, P.; Martinez-Seara, H.; Giorgino, T.; Selent, J., MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 2014, 30 (10), 1478-80.
39. Gapsys, V.; de Groot, B. L.; Briones, R., Computational analysis of local membrane properties. J Comput Aided Mol Des 2013, 27 (10), 845-58.
40. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free‐energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16.
41. Jo, S.; Kim, T.; Iyer, V. G.; Im, W., CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry 2008, 29 (11), 1859-1865.
42. Parrinello, M.; Rahman, A., Crystal structure and pair potentials: A molecular-dynamics study. Physical review letters 1980, 45 (14), 1196.
43. Parrinello, M.; Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics 1981, 52 (12), 7182-7190.
44. Kästner, J., Umbrella sampling. WIREs Computational Molecular Science 2011, 1 (6), 932-942.
45. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method. Journal of Computational Chemistry 1992, 13.
46. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free‐energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16 (11), 1339-1350.
47. Hub, J. S.; de Groot, B. L.; van der Spoel, D., g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. Journal of Chemical Theory and Computation 2010, 6 (12), 3713-3720.
48. Ferrenberg, A. M.; Swendsen, R. H., Optimized monte carlo data analysis. Physical Review Letters 1989, 63 (12), 1195.
49. Heo, L.; Feig, M., One particle per residue is sufficient to describe all-atom protein structures. bioRxiv 2023, 2023.05.22.541652.
50. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-637.
51. Painsky, A.; Rosset, S., Cross-Validated Variable Selection in Tree-Based Methods Improves Predictive Performance. IEEE Trans Pattern Anal Mach Intell 2017, 39 (11), 2142-2153.
52. Lundberg, S. M.; Lee, S.-I., A unified approach to interpreting model predictions. Advances in neural information processing systems 2017, 4765-4774.
53. Raghuraman, H.; Chattopadhyay, A., Melittin: a membrane-active peptide with diverse functions. Biosci Rep 2007, 27 (4-5), 189-223.
54. Allende, D.; Simon, S.; McIntosh, T. J., Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophysical journal 2005, 88 (3), 1828-1837.
55. Sengupta, D.; Leontiadou, H.; Mark, A. E.; Marrink, S. J., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 2008, 1778 (10), 2308-17.
56. Luu, T.; Li, W.; O′Brien-Simpson, N. M.; Hong, Y., Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies. Chem Asian J 2021, 16 (9), 1027-1040.
57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. the Journal of machine Learning research 2011, 12, 2825-2830.
58. Bland, J. M.; Altman, D. G., Measurement error. BMJ 1996, 313 (7059), 744.
59. Microsoft Microsoft/LightGBM: LightGBM is a fast, distributed, high-performance gradient boosting framework based on decision tree algorithms, which is under the umbrella of the DMTK project of Microsoft. https://github.com/Microsoft/LightGBM/.
60. Fu, H.; Cao, Z.; Li, M.; Wang, S., ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genomics 2020, 21 (1), 597.
61. Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A. S.; Al-dabbagh, B. S. N.; Fadhel, M. A.; Manoufali, M.; Zhang, J.; Al-Timemy, A. H.; Duan, Y.; Abdullah, A.; Farhan, L.; Lu, Y.; Gupta, A.; Albu, F.; Abbosh, A.; Gu, Y., A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. Journal of Big Data 2023, 10 (1).
62. Nikolados, E. M.; Wongprommoon, A.; Aodha, O. M.; Cambray, G.; Oyarzun, D. A., Accuracy and data efficiency in deep learning models of protein expression. Nat Commun 2022, 13 (1), 7755.
63. Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Dris, A. B.; Alzakari, N.; Abou Elwafa, A.; Kurdi, H., Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Applied Sciences 2021, 11 (2).
64. Stanev, V.; Oses, C.; Kusne, A. G.; Rodriguez, E.; Paglione, J.; Curtarolo, S.; Takeuchi, I., Machine learning modeling of superconducting critical temperature. npj Computational Materials 2018, 4 (1).
65. Capecchi, A.; Cai, X.; Personne, H.; Kohler, T.; van Delden, C.; Reymond, J. L., Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci 2021, 12 (26), 9221-9232.
66. Muckley, E. S.; Saal, J. E.; Meredig, B.; Roper, C. S.; Martin, J. H., Interpretable models for extrapolation in scientific machine learning. Digital Discovery 2023, 2 (5), 1425-1435.
67. Borg, C. K. H.; Muckley, E. S.; Nyby, C.; Saal, J. E.; Ward, L.; Mehta, A.; Meredig, B., Quantifying the performance of machine learning models in materials discovery. Digital Discovery 2023, 2 (2), 327-338.
68. Mroz, A. M.; Posligua, V.; Tarzia, A.; Wolpert, E. H.; Jelfs, K. E., Into the Unknown: How Computation Can Help Explore Uncharted Material Space. Journal of the American Chemical Society 2022, 144 (41), 18730-18743.
69. Brocke, S. A.; Degen, A.; MacKerell, A. D., Jr.; Dutagaci, B.; Feig, M., Prediction of Membrane Permeation of Drug Molecules by Combining an Implicit Membrane Model with Machine Learning. J Chem Inf Model 2019, 59 (3), 1147-1162.
70. Liao, J.-M.; Tsai, H.-H. G., Extrapolative Machine Learning for Accurate Efficiency Prediction in Non-Fullerene Ternary Organic Solar Cells: Leveraging Computable Molecular Descriptors in High-Throughput Virtual Screening. Solar RRL n/a (n/a), 2400287.
71. Tiihonen, A.; Cox-Vazquez, S. J.; Liang, Q.; Ragab, M.; Ren, Z.; Hartono, N. T. P.; Liu, Z.; Sun, S.; Zhou, C.; Incandela, N. C.; Limwongyut, J.; Moreland, A. S.; Jayavelu, S.; Bazan, G. C.; Buonassisi, T., Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning. Journal of the American Chemical Society 2021, 143 (45), 18917-18931.
72. Veltri, D.; Kamath, U.; Shehu, A., Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34 (16), 2740-2747.
73. Gawde, U.; Chakraborty, S.; Waghu, F. H.; Barai, R. S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S., CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 2023, 51 (D1), D377-D383.
74. Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H. K.; Wong, K. H.; Siu, S. W. I., Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Mol Ther Nucleic Acids 2020, 20, 882-894.
75. Wang, Y.; Zhu, G.; Wang, W.; Zhang, Y.; Zhu, Y.; Wang, J.; Geng, M.; Lu, H.; Chen, Y.; Zhou, M.; Chen, J.; Zhang, F.; Yang, J.; Cheng, X., Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorg Med Chem Lett 2023, 83, 129176.
76. Yao, Y.; Zhang, W.; Li, S.; Xie, H.; Zhang, Z.; Jia, B.; Huang, S.; Li, W.; Ma, L.; Gao, Y.; Song, J.; Wang, R., Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. Journal of Medicinal Chemistry 2023, 66 (10), 6617-6630.
77. Li, C.; Zhou, Z.; Wang, W.; Zhao, Y.; Yin, X.; Meng, Y.; Zhao, P.; Wang, M.; Liu, X.; Wang, X.; Wang, S.; Ren, B.; Zhang, L.; Xia, X., Development of Antibacterial Peptides with Membrane Disruption and Folate Pathway Inhibitory Activities against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024, 67 (2), 1044-1060.
78. Kohavi, R. In A study of cross-validation and bootstrap for accuracy estimation and model selection, Ijcai, Montreal, Canada: 1995; pp 1137-1145.
79. Chen, T.; Guestrin, C., XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery: San Francisco, California, USA, 2016; pp 785–794.
80. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y., Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 2014.
81. Chen, T.; Guestrin, C., XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery: San Francisco, California, USA, 2016; pp 785-794.
82. Friedman, J. H., Greedy function approximation: A gradient boosting machine. The Annals of Statistics 2001, 29 (5), 1189-1232, 44.
83. Haykin, S., Neural networks: a comprehensive foundation. Prentice Hall PTR: 1998.
84. Bishop, C. M., Neural networks for pattern recognition. Oxford university press: 1995.
85. Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning. MIT press: 2016. |