博碩士論文 111223062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.117.12.223
姓名 林家瑋(Chia-Wei Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Advanced Machine Learning Extrapolation Leveraging Coarse-Grained Molecular Dynamics of Membrane Insertion for Precise Hemolytic Activity Prediction in Antimicrobial Peptides)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-23以後開放)
摘要(中) 抗菌肽(AMPs)由於抗生素的失效,已成為下一代有潛力的抗菌化合物。在AMP開發中評估溶血活性是一個重大挑戰,因為它直接影響治療的安全性和有效性,需要在抗菌效力和最小副作用之間取得平衡。在本研究中,我們開發了一種綜合方法,將分子動力學(MD)模擬與機器學習(ML)技術相結合,以預測AMP引起的人類紅細胞(HRBC)溶血活性。利用粗粒度MD(CG-MD)和傘形取樣(US)模擬AMPs的膜插入過程,我們構建了綜合的自由能剖面和動態特性,並將其整合到ML模型中。為了提高外推能力並發現卓越的AMPs,我們應用了以下策略:(i)基於溶血和非溶血的極值構建訓練數據庫。(ii)利用CG-MD模擬進行ML訓練,提供基於物理的新信息以改進外推能力。(iii)使用序列相似性低於70%的代表性AMPs,避免數據過度集中。我們使用LightGBM(LGBM)學習器的預測ML模型在訓練(內插)和測試(外推)數據集上均展現出高準確性(>90%)。ML模型的外推能力首先在與訓練集序列相似性低於40%的測試集中進行評估。我們的預測ML模型在開發卓越AMPs方面展現出適用性,同時在訓練集外的新AMPs上也展示了顯著的泛化性。儘管當訓練集的規模顯著減少時性能略有下降,我們的方法仍然保持穩健。我們的研究表明,AMPs在水相和膜相之間的分配在溶血活性中起著關鍵作用。此外,我們的方法也適用於開發ML模型來預測抗菌活性,發現卓越的AMPs,並解決具有有限可用數據的生物系統問題。
摘要(英) Antimicrobial peptides (AMPs) have emerged as promising next-generation antibacterial compounds due to the failure of antibiotics. Assessing hemolytic activity in AMP development poses a significant challenge as it directly impacts therapeutic safety and efficacy, necessitating a balance between antibacterial potency and minimal side effects. Here, we developed a comprehensive approach integrating Molecular Dynamics (MD) simulations with machine learning (ML) techniques to predict AMP-induced hemolytic activity in human red blood cells (HRBC). Utilizing Coarse-Grained MD (CG-MD) and Umbrella Sampling (US) to simulate the membrane insertion of AMPs, we construct comprehensive free energy profiles and dynamical properties for integration into ML models. To enhance extrapolative capacity and discover exceptional AMPs, we applied the following strategies: (i) Constructing a training database based on extrema of hemolysis and non-hemolysis. (ii) Utilizing CG-MD simulations for ML training to provide new physics-based information for improved extrapolative capability. (iii) Using representative AMPs with sequence identity lower than 70% at the extrema to avoid overly concentrated data. Our predictive ML models, utilizing the LightGBM (LGBM) learner, exhibit high accuracy (> 90%) on both training (interpolative) and testing (extrapolative) datasets. The extrapolative capability of the ML models was first assessed on a test set with sequence identity below 40% to the training set. Our predictive ML models demonstrate applicability in developing exceptional AMPs. They also exhibit significant generalizability, as assessed by new AMPs outside the training set. Although performance slightly decreases when the size of the training set is significantly reduced, our approach remains robust. Our work shows the partition of AMPs between aqueous and membrane phases play a crucial role in hemolytic activity. Additionally, our methodology is applicable for developing ML models to predict antimicrobial activity, discover exceptional AMPs, and address biological systems with limited available data.
關鍵字(中) ★ 抗菌肽
★ 機器學習
★ 溶血性
★ 外插能力
★ 分子動力學模擬
★ 粗粒化
關鍵字(英) ★ antimicrobial peptide
★ machine learning
★ hemolytic activity
★ extrapolation
★ molecular dynamic simulation
★ Coarse-grained
論文目次 摘要 i
ABSTRACT ii
Chapter 1 — INTRODUCTION 1
Chapter 2 — METHODS 7
2.1 Construction of the Training Database of Hemolysis on HRBC 7
2.2 Construction of the Hemolysis Testing Database 8
2.3 Free Energy Profiles of Membrane Insertion 9
2.4 Membrane Structural Property (MSP) 13
2.5 Imbalanced Weights of the Samples 15
2.6 K-fold Validation 15
2.7 Model Performance Evaluation 16
Chapter 3 — RESULTS 18
3.1 Membrane Insertion Free Energy Profiles. 18
3.2 Free Energy Profiles of Membrane Translocation via CG-MD/US Simulation: The Case of Melittin 21
3.3 Reduction of Features’ Dimensionality 24
3.4 Prediction Performance of ML Models 29
3.5 Evaluating the Extrapolative Capability of Predictive Models 31
3.6 Evaluating the Generalization Capability of Predictive Models 33
3.7 Performance of Training on a Limited Data Set 35
3.8 SHAP Analysis of Optimized ML Models: Insights into Hemolytic Mechanisms 38
Chapter 4 — DISCUSSION 42
Chapter 5 — CONCLUSION 45
Supporting Information 47
REFERENCE 58
參考文獻 1. US CDC. Antibiotic Resistance Threats in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/.
2. McKenna, M., Antibiotic resistance: the last resort. Nature 2013, 499 (7459), 394-6.
3. Huan, Y.; Kong, Q.; Mou, H.; Yi, H., Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020, 11, 582779.
4. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G., Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021, 14 (5).
5. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 1987, 84 (15), 5449-53.
6. Mookherjee, N.; Anderson, M. A.; Haagsman, H. P.; Davidson, D. J., Antimicrobial host defence peptides: functions and clinical potential. Nature reviews Drug discovery 2020, 19 (5), 311-332.
7. Waghu, F. H.; Barai, R. S.; Gurung, P.; Idicula-Thomas, S., CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2016, 44 (D1), D1094-7.
8. Wang, G.; Li, X.; Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016, 44 (D1), D1087-93.
9. Pirtskhalava, M.; Amstrong, A. A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D. E.; Tartakovsky, M., DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 2021, 49 (D1), D288-D297.
10. Chen, C. H.; Starr, C. G.; Troendle, E.; Wiedman, G.; Wimley, W. C.; Ulmschneider, J. P.; Ulmschneider, M. B., Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc 2019, 141 (12), 4839-4848.
11. Brogden, K., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature reviews. Microbiology 2005, 3, 238-50.
12. Epand, R. M.; Vogel, H. J., Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462 (1), 11-28.
13. Bechinger, B., The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462 (1), 157-183.
14. Torres, M. D. T.; Cao, J.; Franco, O. L.; Lu, T. K.; de la Fuente-Nunez, C., Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS Nano 2021, 15 (2), 2143-2164.
15. Alessandri, R.; Barnoud, J.; Gertsen, A. S.; Patmanidis, I.; de Vries, A. H.; Souza, P. C. T.; Marrink, S. J., Martini 3 Coarse‐Grained Force Field: Small Molecules. Advanced Theory and Simulations 2021, 5 (1).
16. Souza, P. C. T.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grunewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B. M. H.; Wassenaar, T. A.; Kroon, P. C.; Melcr, J.; Nieto, V.; Corradi, V.; Khan, H. M.; Domanski, J.; Javanainen, M.; Martinez-Seara, H.; Reuter, N.; Best, R. B.; Vattulainen, I.; Monticelli, L.; Periole, X.; Tieleman, D. P.; de Vries, A. H.; Marrink, S. J., Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 2021, 18 (4), 382-388.
17. Herzog, F. A.; Braun, L.; Schoen, I.; Vogel, V., Improved side chain dynamics in MARTINI simulations of protein–lipid interfaces. Journal of chemical theory and computation 2016, 12 (5), 2446-2458.
18. Infield, D. T.; Rasouli, A.; Galles, G. D.; Chipot, C.; Tajkhorshid, E.; Ahern, C. A., Cation-pi Interactions and their Functional Roles in Membrane Proteins. J Mol Biol 2021, 433 (17), 167035.
19. Srinivasan, S.; Zoni, V.; Vanni, S., Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein-membrane interactions. Biophysical Journal 2021, 120 (3), 232a.
20. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D., Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583-589.
21. Torrie, G. M.; Valleau, J. P., Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974, 28 (4), 578-581.
22. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977, 23 (2), 187-199.
23. Popot, J.-L.; Engelman, D. M., Helical membrane protein folding, stability, and evolution. Annual review of biochemistry 2000, 69 (1), 881-922.
24. Liu, H.; Fu, H.; Shao, X.; Cai, W.; Chipot, C., Accurate Description of Cation-pi Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost. J Chem Theory Comput 2020, 16 (10), 6397-6407.
25. Polyansky, A. A.; Ramaswamy, R.; Volynsky, P. E.; Sbalzarini, I. F.; Marrink, S. J.; Efremov, R. G., Antimicrobial Peptides Induce Growth of Phosphatidylglycerol Domains in a Model Bacterial Membrane. The Journal of Physical Chemistry Letters 2010, 1 (20), 3108-3111.
26. Neale, C.; Bennett, W. D.; Tieleman, D. P.; Pomes, R., Statistical convergence of equilibrium properties in simulations of molecular solutes embedded in lipid bilayers. Journal of Chemical Theory and Computation 2011, 7 (12), 4175-4188.
27. Paloncýová, M. t.; Berka, K.; Otyepka, M., Convergence of free energy profile of coumarin in lipid bilayer. Journal of chemical theory and computation 2012, 8 (4), 1200-1211.
28. Wang, Y.; Hu, D.; Wei, D., Transmembrane permeation mechanism of charged methyl guanidine. Journal of chemical theory and computation 2014, 10 (4), 1717-1726.
29. Jambeck, J. P.; Lyubartsev, A. P., Exploring the free energy landscape of solutes embedded in lipid bilayers. The Journal of Physical Chemistry Letters 2013, 4 (11), 1781-1787.
30. Neale, C.; Madill, C.; Rauscher, S.; Pomes, R., Accelerating convergence in molecular dynamics simulations of solutes in lipid membranes by conducting a random walk along the bilayer normal. Journal of Chemical Theory and Computation 2013, 9 (8), 3686-3703.
31. Beranova, L.; Cwiklik, L.; Jurkiewicz, P.; Hof, M.; Jungwirth, P., Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir 2010, 26 (9), 6140-6144.
32. Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H., DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 2022, 50 (D1), D488-D496.
33. Capecchi, A.; Cai, X.; Personne, H.; Köhler, T.; van Delden, C.; Reymond, J.-L., Machine learning designs non-hemolytic antimicrobial peptides. Chemical Science 2021, 12 (26), 9221-9232.
34. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28 (23), 3150-3152.
35. Singh, O.; Hsu, W. L.; Su, E. C., Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. BMC Bioinformatics 2021, 22 (1), 389.
36. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25.
37. Humphrey, W.; Dalke, A.; Schulten, K., VMD: visual molecular dynamics. Journal of molecular graphics 1996, 14 (1), 33-38.
38. Guixa-Gonzalez, R.; Rodriguez-Espigares, I.; Ramirez-Anguita, J. M.; Carrio-Gaspar, P.; Martinez-Seara, H.; Giorgino, T.; Selent, J., MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 2014, 30 (10), 1478-80.
39. Gapsys, V.; de Groot, B. L.; Briones, R., Computational analysis of local membrane properties. J Comput Aided Mol Des 2013, 27 (10), 845-58.
40. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free‐energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16.
41. Jo, S.; Kim, T.; Iyer, V. G.; Im, W., CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry 2008, 29 (11), 1859-1865.
42. Parrinello, M.; Rahman, A., Crystal structure and pair potentials: A molecular-dynamics study. Physical review letters 1980, 45 (14), 1196.
43. Parrinello, M.; Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics 1981, 52 (12), 7182-7190.
44. Kästner, J., Umbrella sampling. WIREs Computational Molecular Science 2011, 1 (6), 932-942.
45. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method. Journal of Computational Chemistry 1992, 13.
46. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free‐energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16 (11), 1339-1350.
47. Hub, J. S.; de Groot, B. L.; van der Spoel, D., g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. Journal of Chemical Theory and Computation 2010, 6 (12), 3713-3720.
48. Ferrenberg, A. M.; Swendsen, R. H., Optimized monte carlo data analysis. Physical Review Letters 1989, 63 (12), 1195.
49. Heo, L.; Feig, M., One particle per residue is sufficient to describe all-atom protein structures. bioRxiv 2023, 2023.05.22.541652.
50. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-637.
51. Painsky, A.; Rosset, S., Cross-Validated Variable Selection in Tree-Based Methods Improves Predictive Performance. IEEE Trans Pattern Anal Mach Intell 2017, 39 (11), 2142-2153.
52. Lundberg, S. M.; Lee, S.-I., A unified approach to interpreting model predictions. Advances in neural information processing systems 2017, 4765-4774.
53. Raghuraman, H.; Chattopadhyay, A., Melittin: a membrane-active peptide with diverse functions. Biosci Rep 2007, 27 (4-5), 189-223.
54. Allende, D.; Simon, S.; McIntosh, T. J., Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophysical journal 2005, 88 (3), 1828-1837.
55. Sengupta, D.; Leontiadou, H.; Mark, A. E.; Marrink, S. J., Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 2008, 1778 (10), 2308-17.
56. Luu, T.; Li, W.; O′Brien-Simpson, N. M.; Hong, Y., Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies. Chem Asian J 2021, 16 (9), 1027-1040.
57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. the Journal of machine Learning research 2011, 12, 2825-2830.
58. Bland, J. M.; Altman, D. G., Measurement error. BMJ 1996, 313 (7059), 744.
59. Microsoft Microsoft/LightGBM: LightGBM is a fast, distributed, high-performance gradient boosting framework based on decision tree algorithms, which is under the umbrella of the DMTK project of Microsoft. https://github.com/Microsoft/LightGBM/.
60. Fu, H.; Cao, Z.; Li, M.; Wang, S., ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. BMC Genomics 2020, 21 (1), 597.
61. Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A. S.; Al-dabbagh, B. S. N.; Fadhel, M. A.; Manoufali, M.; Zhang, J.; Al-Timemy, A. H.; Duan, Y.; Abdullah, A.; Farhan, L.; Lu, Y.; Gupta, A.; Albu, F.; Abbosh, A.; Gu, Y., A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. Journal of Big Data 2023, 10 (1).
62. Nikolados, E. M.; Wongprommoon, A.; Aodha, O. M.; Cambray, G.; Oyarzun, D. A., Accuracy and data efficiency in deep learning models of protein expression. Nat Commun 2022, 13 (1), 7755.
63. Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Dris, A. B.; Alzakari, N.; Abou Elwafa, A.; Kurdi, H., Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Applied Sciences 2021, 11 (2).
64. Stanev, V.; Oses, C.; Kusne, A. G.; Rodriguez, E.; Paglione, J.; Curtarolo, S.; Takeuchi, I., Machine learning modeling of superconducting critical temperature. npj Computational Materials 2018, 4 (1).
65. Capecchi, A.; Cai, X.; Personne, H.; Kohler, T.; van Delden, C.; Reymond, J. L., Machine learning designs non-hemolytic antimicrobial peptides. Chem Sci 2021, 12 (26), 9221-9232.
66. Muckley, E. S.; Saal, J. E.; Meredig, B.; Roper, C. S.; Martin, J. H., Interpretable models for extrapolation in scientific machine learning. Digital Discovery 2023, 2 (5), 1425-1435.
67. Borg, C. K. H.; Muckley, E. S.; Nyby, C.; Saal, J. E.; Ward, L.; Mehta, A.; Meredig, B., Quantifying the performance of machine learning models in materials discovery. Digital Discovery 2023, 2 (2), 327-338.
68. Mroz, A. M.; Posligua, V.; Tarzia, A.; Wolpert, E. H.; Jelfs, K. E., Into the Unknown: How Computation Can Help Explore Uncharted Material Space. Journal of the American Chemical Society 2022, 144 (41), 18730-18743.
69. Brocke, S. A.; Degen, A.; MacKerell, A. D., Jr.; Dutagaci, B.; Feig, M., Prediction of Membrane Permeation of Drug Molecules by Combining an Implicit Membrane Model with Machine Learning. J Chem Inf Model 2019, 59 (3), 1147-1162.
70. Liao, J.-M.; Tsai, H.-H. G., Extrapolative Machine Learning for Accurate Efficiency Prediction in Non-Fullerene Ternary Organic Solar Cells: Leveraging Computable Molecular Descriptors in High-Throughput Virtual Screening. Solar RRL n/a (n/a), 2400287.
71. Tiihonen, A.; Cox-Vazquez, S. J.; Liang, Q.; Ragab, M.; Ren, Z.; Hartono, N. T. P.; Liu, Z.; Sun, S.; Zhou, C.; Incandela, N. C.; Limwongyut, J.; Moreland, A. S.; Jayavelu, S.; Bazan, G. C.; Buonassisi, T., Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning. Journal of the American Chemical Society 2021, 143 (45), 18917-18931.
72. Veltri, D.; Kamath, U.; Shehu, A., Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34 (16), 2740-2747.
73. Gawde, U.; Chakraborty, S.; Waghu, F. H.; Barai, R. S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S., CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res 2023, 51 (D1), D377-D383.
74. Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H. K.; Wong, K. H.; Siu, S. W. I., Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Mol Ther Nucleic Acids 2020, 20, 882-894.
75. Wang, Y.; Zhu, G.; Wang, W.; Zhang, Y.; Zhu, Y.; Wang, J.; Geng, M.; Lu, H.; Chen, Y.; Zhou, M.; Chen, J.; Zhang, F.; Yang, J.; Cheng, X., Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorg Med Chem Lett 2023, 83, 129176.
76. Yao, Y.; Zhang, W.; Li, S.; Xie, H.; Zhang, Z.; Jia, B.; Huang, S.; Li, W.; Ma, L.; Gao, Y.; Song, J.; Wang, R., Development of Neuropeptide Hemokinin-1 Analogues with Antimicrobial and Wound-Healing Activity. Journal of Medicinal Chemistry 2023, 66 (10), 6617-6630.
77. Li, C.; Zhou, Z.; Wang, W.; Zhao, Y.; Yin, X.; Meng, Y.; Zhao, P.; Wang, M.; Liu, X.; Wang, X.; Wang, S.; Ren, B.; Zhang, L.; Xia, X., Development of Antibacterial Peptides with Membrane Disruption and Folate Pathway Inhibitory Activities against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024, 67 (2), 1044-1060.
78. Kohavi, R. In A study of cross-validation and bootstrap for accuracy estimation and model selection, Ijcai, Montreal, Canada: 1995; pp 1137-1145.
79. Chen, T.; Guestrin, C., XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery: San Francisco, California, USA, 2016; pp 785–794.
80. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y., Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 2014.
81. Chen, T.; Guestrin, C., XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery: San Francisco, California, USA, 2016; pp 785-794.
82. Friedman, J. H., Greedy function approximation: A gradient boosting machine. The Annals of Statistics 2001, 29 (5), 1189-1232, 44.
83. Haykin, S., Neural networks: a comprehensive foundation. Prentice Hall PTR: 1998.
84. Bishop, C. M., Neural networks for pattern recognition. Oxford university press: 1995.
85. Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning. MIT press: 2016.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明