博碩士論文 111623001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.147.75.46
姓名 鄭子琳(Zih-Lin Cheng)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 應用Spatial Attention U-Net神經網路於VIPIR垂直電離圖的自動判圖處理
(Application of Spatial Attention U-Net Neural Network in autoprocessing of VIPIR vertical ionograms)
相關論文
★ 運用模糊幾何理論對於Es層做自動分類及分析★ GPS/MET及中壢DPS電離層遮蔽觀測比較
★ 結合NNSS與GPS/MET衛星資料於電離層斷層掃描觀測及其比較★ 電離圖判讀與流星研究
★ 中壢動態式電離層觀測儀(dynasonde)訊號處理★ 利用動態式電離層觀測儀觀測不規則體小尺度變化
★ GPS/MET遮蔽觀測與IRI模式foF2和hmF2之比較★ GPS信號遮蔽觀測於電離層斷層掃描之模擬研究
★ ITS30-LITN觀測電離層不規則體閃爍現象★ 中壢動態式電離層探測儀系統控制卡(CRAM Card)重建及測試
★ 運用ITS系統對於低緯度電離層斷層掃瞄的 模擬與研究★ GPS/MET遮蔽觀測foF2 numerical mapping與IRI 模式之比較分析
★ 低緯度電離層不規則體之結構研究★ 利用福衛三號掩星觀測資料研究電離層增層現象
★ 運用臺灣自主電離層數值模式研究電離層赤道異常現象★ 臺灣第二代動態式電離層探測儀之建置與資料處理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,提出了一種基於Spatial Attention U-Net (SA U-Net)神經網路從電離圖中提取電離層回波訊號的方法。電離圖資料由位於台灣花蓮(北緯 23.99°,東經 131.61°)的垂直入射脈衝電離層雷達(Vertical Incidence Pulsed Ionospheric Radar,VIPIR)提供,每天可產生288張電離圖。SA U-Net是一種以圖像分割為目的而開發的卷積神經網路。目前,我們收集了2013年8月至2014年6月的常態數據,使用SA U-Net訓練以及自動處理這些數據,並以各訊號的臨界頻率以及虛擬高度準確度作為判斷SA U-Net性能的方式。最後,我們還對訓練資料進行分類處理,嘗試使用分類後的資料訓練神經網路模型,期望能提高模型對該類電離圖訊號的判斷成功率。
摘要(英) In this study, we propose a method for extracting ionospheric echo signals from ionograms based on Spatial Attention U-Net (SA U-Net) neural network. Ionogram data are provided by the Vertical Incidence Pulsed Ionospheric Radar (VIPIR) located in Hualien, Taiwan (23.99° north latitude, 131.61° east longitude), which can produce 288 ionization maps every day. SA U-Net is a convolutional neural network developed for the purpose of image segmentation. Currently, we have collected normal data from August 2013 to June 2014, used SA U-Net to train and automatically process the data, and used the critical frequency and virtual height accuracy of each signal as a criterion to judge the performance of SA U-Net. Finally, we classify the training data and try to use the classified data to train the neural network model, hoping to improve the judgment success rate of the model.
關鍵字(中) ★ 電離圖
★ 神經網路
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
一、 緒論 1
二、 電離層簡介 3
2-1 電離層基本結構 3
2-2 查普曼層理論(Chapman Layer Theory) 4
三、 電離層觀測儀與電離圖 8
3-1 系統 8
3-2 觀測原理 10
3-2-1 電漿頻率 10
3-2-2 迴旋頻率 11
3-2-3 電磁波在電漿中的傳播 12
3-3 電離圖 14
四、 Spatial Attention U-Net神經網路 18
4-1 神經網路的基本架構 18
4-2 Spatial Attention U-Net神經網路模型 26
五、 應用SA U-Net的電離圖判圖 34
5-1 資料來源 34
5-2 環境建置 36
5-3 神經網路模型的訓練 40
5-4 判斷模型表現的標準 42
六、 研究成果 45
七、 討論 49
八、 結論 50
參考文獻 51
參考文獻 [1] 周政宏,神經網路-理論與實務,初版,臺北市,1995
[2] 柳銘哲,電磁波在電漿中的傳播,第四十四期,元培科技大學通識中心,PP.59-69,2013
[3] 劉正彥,地球的大氣層與電離層,電離層電波科學實驗室,2018
[4] David K. Cheng, Addison Wesley. Field and Wave Electromagnetics. Pearson Education Limited, 2014.
[5] Kelley, M. C. The Earth′s Ionosphere: Plasma Physics and Electrodynamics (2nd ed.). Academic Press. Published 1989.
[6] Antonio Gulli, Sujit Pal. Deep Learning with Keras. Packt Publishing. Released April 2017.
[7] Harris, T. J., & Pederick, L. H. (2017). A robust automatic ionospheric O/X mode separation technique for vertical incidence sounders. Radio Science, 52, 1534–1543.
[8] Guan-Han Huang, Alexei V. Dmitriev, Lung-Chih Tsai, Enkhtuya Tsogtbaatar, Yu-Chi Chang, Mon-Chai Hsieh, Merlin M. Mendoza, Yu-Chiang Lin, Hao-Wei Hsu, and Chia-Hsien Lin. (2022). SA-UNet for The Recovery of Ionograms [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/1933301 [last accessed July, 2024]
[9] Chang, Y.-C.; Lin, C.-H.; Dmitriev, A.V.; Hsieh, M.-C.; Hsu, H.-W.; Lin, Y.-C.; Mendoza, M.M.; Huang, G.-H.; Tsai, L.-C.; Li, Y.-H.; et al. State-of-the-Art Capability of Convolutional Neural Networks to Distinguish the Signal in the Ionosphere. Sensors 2022, 22, 2758.
[10] Mendoza, M.M.; Chang, Y.-C.; Dmitriev, A.V.; Lin, C.-H.; Tsai, L.-C.; Li, Y.-H.; Hsieh, M.-C.; Hsu, H.-W.; Huang, G.-H.; Lin, Y.-C.; et al. Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges. Sensors 2021, 21, 6482.
[11] Wada, K. (2016). Labelme: Image polygonal annotation with Python. Retrieved from https://github.com/wkentaro/labelme
[12] Golnaz Ghiasi, Tsung-Yi Lin, Quoc V. Le. DropBlock: A regularization method for convolutional networks. Accepted at NIPS 2018. Computer Vision and Pattern Recognition.
[13] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, Aleksander Madry. How Does Batch Normalization Help Optimization? NeurIPS′18, Statistics, Machine Learning (stat.ML).
[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. Attention Is All You Need. Computer Science, Computation and Language. (2017)
[15] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R. Martin, Ming-Ming Cheng, Shi-Min Hu. Attention Mechanisms in Computer Vision: A Survey. Computational Visual Media, 2022.
[16] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams. Learning representations by back-propagating errors. Nature volume 323, pages533–536 (1986).
[17] Changlu Guo, Márton Szemenyei, Yugen Yi, Wenle Wang, Buer Chen, Changqi Fan. SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation. ICPR 2020.
[18] Atlas, Homma, and Marks. An Artificial Neural Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification. Neural Information Processing Systems (NIPS 1987).
[19] Chervyakov, N.I.; Lyakhov, P.A.; Deryabin, M.A.; Nagornov, N.N.; Valueva, M.V.; Valuev, G.V. Residue Number System-Based Solution for Reducing the Hardware Cost of a Convolutional Neural Network. Neurocomputing. September 2020.
[20] Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 11 Feb 2015.
[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany. 18 May 2015.
[22] Evan Shelhamer, Jonathan Long, Trevor Darrell. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.
[23] Andrew Lavin, Scott Gray. Fast Algorithms for Convolutional Neural Networks. CVPR 2016.
[24] Hendrycks, Dan; Gimpel, Kevin. "Gaussian Error Linear Units (GELUs)". Trimmed version of 2016 draft. arXiv:1606.08415
[25] Prajit Ramachandran, Barret Zoph, Quoc V. Le. Searching for Activation Functions. ICLR 2018.
指導教授 蔡龍治(Lung-Chih Tsai) 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明