摘要(英) |
The sources of Hazardous Air Pollutants (HAPs) in the environment are numerous. For stationary sources, HAPs emitted from pipelines or fugitive sources can disperse through the atmosphere and potentially cause acute and chronic health hazards to nearby residential areas, with some even being carcinogenic. In 2021, the Environmental Protection Administration announced the "Emission Standards for Hazardous Air Pollutants from Stationary Sources," prioritizing the regulation of 22 out of the 73 HAPs from stationary sources, including standards for emissions from pipes and boundary concentrations. Among these, 14 are Volatile Organic Compounds (VOCs). Currently, the method for detecting HAPs VOCs in the environment in Taiwan involves sampling with pre-evacuated stainless steel canisters, followed by analysis with Gas Chromatography Mass Spectrometry (GC-MS), which is an offline detection technique. In 2021, the National Institute of Environmental Research successfully developed an online mass spectrometry monitoring technology. With support from the Ministry of Environment of Department of Monitoring and Information, the first environmental HAPs automatic continuous monitoring demonstration station in Taiwan was established at the perimeter of the Ren Da Industrial Area in Kaohsiung City in March 2023. This station can obtain hourly data for 87 organic HAPs in real-time, effectively tracking changes in ambient air concentrations around the industrial area. This study aims to establish maintenance standard operating procedure (SOP) for the HAPs monitoring hardware and quality assurance and quality control (QA/QC) methods, and to identify critical HAPs items through the monitoring results.
Utilizing commercialized dewater and thermal desorption(TD) equipment in conjunction with GC-MS, referred to as TD-GC-MS, the application of Jetclean technology significantly extends the lifespan of the ion source, allowing continuous monitoring for up to three weeks. By controlling the trends of internal standards, the stability and sensitivity of the instrument can be observed, thereby establishing SOP for hardware maintenance and data quality assurance and quality control.
The results of one year of continuous monitoring indicate occasional high-value events for certain HAPs VOCs. Potential emission sources can be identified by analyzing the trends of other VOC fingerprints, and by combining with meteorological data to draw wind rose diagrams for source tracing investigation. During the monitoring period, offline sampling is conducted once per quarter for a continuous four hours, with samples sent to certified laboratories for analysis. The results show that the monitoring data correlate well, with most data points falling around the 1:1 line. Additionally, a parallel comparison with the photochemical monitoring station′s GC-FID shows a high correlation (r>0.7). This study also discovered that methylcyclopentane and 1,2-dichloroethane co-elute in the GC-FID at the photochemical station. By using ion fragments in GC-MS to distinguish between them, the results indicate that when concentrations exceed 1 ppbv, the measured value of methylcyclopentane should be attributed to 1,2-dichloroethane. GC-FID relies solely on retention time to differentiate pollutants, which can lead to misidentification in the case of co-eluting VOCs, resulting in significant discrepancies in health risk assessments.
This study screened important HAPs in the Ren Da Industrial Area based on inhalation carcinogenic risk, with major contributors including butadiene (24.4%), acrylonitrile (23.7%), benzene (11.1%), and chlorides, accounting for 80% of the total risk. Future online measurements of HAPs emissions must consider both toxicological properties and concentrations to achieve source control and end-of-pipe emission reduction, effectively lowering public health risks. This approach will maximize the utility of the HAPs monitoring station. |
參考文獻 |
1. Baird, C. and M. Cann, Environmental Chemistry. Freeman and Company. New York, 2005,: WH 608.
2. Wang, L., R. Atkinson, and J. Arey, Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1-and C2 alkylnaphthalenes. Environmental science & technology, 2007. 41(8):2803-2810.
3. Anand, S.M., HM; Philip, BK, Volatile Organic Compounds. Encyclopedia of Toxicology. 2014. 967-970.
4. Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 2000. 34(12-14):2063-2101.
5. 中華民國環境部,固定污染源有害空氣污染物排放標準草案,2017。
6. 中華民國環境部,有害空氣污染物管制; https://air.moenv.gov.tw/EnvTopics/StationarySource_13.aspx.
7. 中華民國環境部,擴大空污排放差別費率,強化減排誘因,環保署公告修正「固定污染源空氣污染防制費收費費率」,2023; https://air.moenv.gov.tw/News/news.aspx?ID=1846.
8. EPA, U.S., TECHNICAL ASSISTANCE DOCUMENT FOR THE
NATIONAL AIR TOXICS TRENDS STATIONS PROGRAM Revision 3. 2016.
9. EPA, U.S. Air Toxics Ambient Monitoring National Air Toxic Trends Sites (NATTS); https://www.epa.gov/amtic/air-toxics-ambient-monitoring#natts.
10. Assembly Bill No. 617. 2017.
11. p66-wilmington-updated-fenceline-air-monitoring-plan. 2019.
12. Rule 1180 Implementation Update. 2019.
13. SCAQMD. MATES V Air Monitoring Data Dashboard; https://www.aqmd.gov/home/air-quality/air-quality-studies/health-studies/mates-v/mates-v-air-monitoring-dashboard.
14. SCAQMD, APPENDIX V MATES V FINAL REPORT.
15. TECQ. Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft). 2021.
16. TECQ. About Air Monitoring Comparison Values (AMCVs); https://www.tceq.texas.gov/toxicology/amcv.
17. 日本環境省,大気汚染防止法の概要; https://www.env.go.jp/air/osen/law/index.html.
18. 日本環境省,有害大気汚染物質対策;https://www.env.go.jp/air/osen/law/yugai.html.
19. 韓國環境部,清潔空氣保護法(대기환경보전법); https://www.law.go.kr/
20. 韓國環境部,清潔空氣保護法施⾏細則(대기환경보전법 시행규칙)。
21. 中華人民共和國生態環境部,大气污染物综合排放标准。
22. 中華人民共和國生態環境部,環境空氣質量標準,2016。
23. Li, C., et al., A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O(3) formation. Sci Total Environ, 2022. 806(Pt 1): p. 150247.
24. Xiong, C., et al., Component characteristics and source apportionment of volatile organic compounds during summer and winter in downtown Chengdu, southwest China. Atmospheric Environment, 2021. 258.
25. 中華民國環境部國家環境研究院,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法(NIEA A715.16B),2021。
26. 中華民國環境部國家環境研究院,空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法(NIEA A505.12B),2013。
27. 中華民國環境部,固定污染源有害空氣污染物減量推動及技術改善計畫,2019。
28. 中華民國環境部,固定污染源有害空氣污染物管制及減量推動計畫,2020。
29. 中華民國環境部,固定污染源有害空氣污染物管制及減量推動計畫,2021。
30. 中華民國環境部,固定污染源有害空氣污染物管制暨消費性產品揮發性有機物減量推動計畫,2022。
31. 中華民國環境部國家環境研究院,空氣中四氯甲烷等揮發性有害空氣污染物擴散式採樣與現地質譜監測調查技術精進開發,2021。
32. 楊雅宜,線上熱脫附氣相層析/質譜儀技術即時監測工業區空氣中有害揮發性有機化合物,化學學系,國立中央大學,2022。
33. 王品溱,以氣相層析技術探討有害空氣污染物溯源與金屬有機骨架材料應用,化學學系,國立中央大學,2023。
34. Agency, U.S.E.P., Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs ) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS). 1999.
35. Agency, U.S.E.P., Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes. 1999.
36. Gong, Q. and K.L. Demerjian, Hydrocarbon Losses on a Regenerated Nation® Dryer. Journal of the Air & Waste Management Association, 2012. 45(6):490-493.
37. Burns, W.F., D.T. Tingey, R.C. Evans, and E.H. Bates, Problems with a Nafion® membrane dryer for drying chromatographic samples. Journal of Chromatography A, 1983. 269:1-9.
38. Gawłowski, J., et al., Dry purge for the removal of water from the solid sorbents used to sample volatile organic compounds from the atmospheric air. The Analyst, 2000. 125(11):2112-2117.
39. 朱晨瑄,以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,國立中央大學,2020。
40. Agilent 5977 Series MSD Laboratory Operator Quick Reference Guide.
41. Agilent 5977B Series MSD Troubleshooting and Maintenance Manual.
42. Agilent 5977 Series MSD System Concepts Guide.
43. Agilent JetClean Operating Manual.
44. LabWrench. GC - Gas Chromatography/GC Accessories/Agilent Technologies-JetCleanSelf-CleaningIonSource.2022; https://www.labwrench.com/equipment/24541/agilent-technologies-jetclean-self-cleaning-ion-source.
45. 詹竹玉,藉由注氫技術改善質譜儀電子游離源條件以優化空氣有害污染物連續監測方法,化學學系,國立中央大學,2022。
46. 曾美惠,離子通道孔徑對熱脫附GC-MS連續監測空氣有害物質穩定性的影響,化學學系,國立中央大學,2021。
47. 如何清潔Agilent 5977A/B 中的EI/CI離子源,2022。
48. Faraz Ahangar, et al., MATES V Multiple Air Toxics Exposure Study in the SouthCoast AQMD, S.C.A.Q.M. District, Editor. 2021.
49. Bechtol, M., Phillips 66 – Wilmington Refinery 1180 Air Monitoring Plan. 2021.
50. 3100D不銹鋼採樣桶(canister)清洗裝置操作手冊,吉偉儀器股份有限公司。
51. 4700靜態稀釋系統操作手冊,吉偉儀器股份有限公司。
52. Chapter One of the SW-846 Compendium: Project Quality Assurance and Quality Control. 2021; https://www.epa.gov/hw-sw846/chapter-one-sw-846-compendium-project-quality-assurance-and-quality-control.
53. Tim Shotter, D.N.P., All Sensors. Understanding Accuracy and Precision for MEMS Pressure 152 Sensors. 2021; https://www.designworldonline.com/understanding-accuracy-and-precision-for-mems-pressure-sensors/.
54. 中華民國環境部國家環境研究院,環境檢驗方法偵測極限測定指引,2004。
55. Davidson, C.J., J.H. Hannigan, and S.E. Bowen, Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): Toward an environmental exposure model. Environ Toxicol Pharmacol, 2021. 81: p. 103518.
56. Baghani, A.N., et al., Sensitivity of BTEX pollution and health effects to traffic restrictions: A case study in an urban center of Tehran, Iran. Sustainable Cities and Society, 2024. 104.
57. Hamid, H.H.A., et al., Ambient BTEX levels over urban, suburban and rural areas in Malaysia. Air Quality, Atmosphere & Health, 2019. 12(3): p. 341-351.
58. Sittig, M., Vinyl chloride and PVC manufacture: Process and environmental aspects. Noyes Data Corporation, 1978.
59. 郭勝儒,空氣中氯乙烯、1, 2-二氯乙烷GC/MS在線監測方法,化學學系,國立中央大學,2017。
60. 中華民國環境部,固定污染源有害空氣污染物排放標準附表,2021。
61. 1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide).2008; https://pesquisa.bvsalud.org/portal/resource/pt/mis-22476.
62. 職業暴露二烯烴類化合物(Dienes):丁二烯(Butadiene)與其他二烯烴類化合物引起職業性疾病認定參考指引,勞動部職業安全衛生署,2023。
63. Registry, A.f.T.S.a.D., ToxFAQs™ for 1,3-Butadiene. 2012.
64. Registry,A.f.T.S.a.D.,ToxFAQs™ for Styrene. 2012.
65. Registry, A.f.T.S.a.D., ToxFAQs™ for Acrylonitrile. 1999.
66. Registry,A.f.T.S.a.D.,ToxFAQs™ for Vinyl acetate. 2011.
67. 中華民國環境部,臭氧層保護相關法規,2019。
68. Tsai, W.T., Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts. Toxics, 2017. 5(4): p. 23.
69. Montzka, S., S. Reimann, S. O′Doherty, A. Engel, K. Krüger, and W. Sturges, Ozone-depleting substances (ODSs) and related chemicals. World Meteorological Organization., 2011.
70. Appendix A: Hot Spots Unit Risk and Cancer Potency Values. 2023: California Environmental Protection Agency′s Office of Environmental Health Hazard Assessment (OEHHA).
71. Methanesulfonyl chloride Mass spectrum (electron ionization); https://webbook.nist.gov/cgi/cbook.cgi?ID=C124630&Mask=200#Mass-Spec.
72. 劉立文,高科技行業使用新興材料職業衛生危害性調查研究,2009,行政院勞工委員會勞工安全衛生研究所。
73. Hexamethylcyclotrisiloxan Mass spectrum (electron ionization); https://webbook.nist.gov/cgi/cbook.cgi?ID=C541059&Mask=200#Mass-Spec. |