參考文獻 |
〔1〕 Energy Institute - Statistical Review of World Energy (2023).
From: https://ourworldindata.org/energy-production-consumption
〔2〕REN 21, 2023. Renewables 2023 Global Status Report.
From: https://www.ren21.net/gsr-2023/
〔3〕 (經濟部能源局,2023a) ,台大風險中心製圖。
取自:https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1767-2022-open-energy-review.html
〔4〕 Best Research-Cell Efficiency Chart.
From: https://www.nrel.gov/pv/cell-efficiency.html
〔5〕 Luo, S.; Daoud, W. A., “Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design.” Journal of Materials Chemistry A 2015, 3 (17), 8992-9010.
〔6〕 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” J. Am. Chem. Soc. 2009, 131, 6050-6051.
〔7〕 Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Scientific reports 2012, 2 (1), 591.
〔8〕 Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.” Nano letters 2013, 13 (4), 1764-69.
〔9〕 Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., “Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency.” Energy & Environmental Science 2015, 8 (5), 1602-08.
〔10〕 Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., “Recent progress in electron transport layers for efficient perovskite solar cells.” Journal of Materials Chemistry A 2016, 4 (11), 3970-90.
〔11〕 Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J., “Influence of blend microstructure on bulk heterojunction organic photovoltaic performance.” Chemical Society Reviews 2011, 40 (3), 1185-99.
〔12〕 Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells.” Nano letters 2013, 13 (4), 1764-69.
〔13〕 Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M., “Mixed‐organic‐cation Perovskite photovoltaics for enhanced solar‐light harvesting.” Angewandte Chemie International Edition 2014, 53 (12), 3151-57.
〔14〕 Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T., “CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm.” The journal of physical chemistry letters 2014, 5 (6), 1004-11.
〔15〕Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y., “Architecture of pin Sn-based perovskite solar cells: characteristics, advances, and perspectives.” ACS Energy Letters 2021, 6 (8), 2863-75.
〔16〕 Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.” Energy & environmental science 2016, 9 (6), 1989-97.
〔17〕 Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A., “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.” Science 2016, 354 (6309), 206-09.
〔18〕 Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P., “A review of inorganic hole transport materials for perovskite solar cells.” Advanced Materials Interfaces 2018, 5 (22), 1800882.
〔19〕 Kim, G.-W.; Kang, G.; Kim, J.; Lee, G.-Y.; Kim, H. I.; Pyeon, L.; Lee, J.; Park, T., “Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells.” Energy & Environmental Science 2016, 9 (7), 2326-33.
〔20〕 Qin, P.; Paek, S.; Dar, M. I.; Pellet, N.; Ko, J.; Grätzel, M.; Nazeeruddin, M. K., “Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material.” Journal of the American Chemical Society 2014, 136 (24), 8516-19.
〔21〕 Abate, A.; Leijtens, T.; Pathak, S.; Teuscher, J.; Avolio, R.; Errico, M. E.; Kirkpatrik, J.; Ball, J. M.; Docampo, P.; McPherson, I., “Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells.” Physical Chemistry Chemical Physics 2013, 15 (7), 2572-79.
〔22〕 Leijtens, T.; Lim, J.; Teuscher, J.; Park, T.; Snaith, H. J., “Charge density dependent mobility of organic hole-transporters and mesoporous TiO₂ determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells.” Advanced Materials (Deerfield Beach, Fla.) 2013, 25 (23), 3227-33.
〔23〕 Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S. R.; Chen, M.; Baranwal, A. K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D., “Tin–lead perovskite solar cells fabricated on hole selective monolayers.” ACS Energy Letters 2022, 7 (3), 966-74.
〔24〕 Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; Werner, J.; Eperon, G. E.; de Paula, C.; Palmstrom, A. F., “Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability.” Nature Energy 2019, 4 (11), 939-47.
〔25〕 Li, X.; Yu, H.; Liu, Z.; Huang, J.; Ma, X.; Liu, Y.; Sun, Q.; Dai, L.; Ahmad, S.; Shen, Y., “Progress and challenges toward effective flexible perovskite solar cells.” Nano-Micro Letters 2023, 15 (1), 206.
〔26〕 Uddin, M. G. “Development of Simplified In Situ Processing Routes for Rear-Side Patterning of Silicon Heterojunction Interdigitated Back Contact (SHJ-IBC) Solar Cells.” Itä-Suomen yliopisto, 2018.
〔27〕 Wright, M.; Uddin, A. “Organic—inorganic hybrid solar cells: A comparative
review.” Sol. Energy Mater Sol. Cells 2012, 107, 87-111. 〔28〕 Arora, N.; Wetzel, C.; Dar, M. I.; Mishra, A.; Yadav, P.; Steck, C.; Zakeeruddin, S. M.; Bäuerle, P.; Grätzel, M., “Donor–acceptor-type S, N-heteroacene-based hole-transporting materials for efficient perovskite solar cells.” ACS applied materials & interfaces 2017, 9 (51), 44423-28.
〔29〕Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y., “D–A–D-typed hole transport materials for efficient perovskite solar cells: tuning photovoltaic properties via the acceptor group.” ACS applied materials & interfaces 2018, 10 (23), 19697-703.
〔30〕 Joseph, V.; Xia, J.; Sutanto, A. A.; Jankauskas, V.; Momblona, C.; Ding, B.; Rakstys, K.; Balasaravanan, R.; Pan, C.-H.; Ni, J.-S., “Triarylamine-functionalized imidazolyl-capped bithiophene hole transporting material for cost-effective perovskite solar cells.” ACS Applied Materials & Interfaces 2022, 14 (19), 22053-60.
〔31〕 Zhang, X.; Ghadari, R.; Liu, X.; Wang, W.; Ding, Y.; Cai, M.; Pan, J. H.; Dai, S., “Heteroatom effect on linear-shaped dopant-free hole transporting materials for perovskite solar cells.” Solar Energy 2021, 221, 323-31.
〔32〕 Duan, L.; Chen, Y.; Jia, J.; Zong, X.; Sun, Z.; Wu, Q.; Xue, S., “Dopant-free hole-transport materials based on 2, 4, 6-triarylpyridine for inverted planar perovskite solar cells.” ACS Applied Energy Materials 2020, 3 (2), 1672-83.
〔33〕 Zhang, X.; Ma, S.; Wu, G.; Liu, X.; Mateen, M.; Ghadari, R.; Wu, Y.; Ding, Y.; Cai, M.; Dai, S., “Fused tetraphenylethylene–triphenylamine as an efficient hole transporting material in perovskite solar cells.” Chemical communications 2020, 56 (21), 3159-62.
〔34〕 Onozawa-Komatsuzaki, N.; Tsuchiya, D.; Inoue, S.; Kogo, A.; Funaki, T.; Chikamatsu, M.; Ueno, T.; Murakami, T. N., “Highly efficient dopant-free cyano-substituted spiro-type hole-transporting materials for perovskite solar cells.” ACS Applied Energy Materials 2022, 5 (6), 6633-41.
〔35〕Qin, T.; Wu, F.; Ma, D.; Mu, Y.; Chen, X.; Yang, Z.; Zhu, L.; Zhang, Y.; Zhao, J.; Chi, Z., “Asymmetric sulfonyldibenzene-based hole-transporting materials for efficient perovskite solar cells: Inspiration from organic thermally-activated delayed fluorescence molecules.” ACS Materials Letters 2020, 2 (9), 1093-100.
〔36〕 Wang, S.; Guo, H.; Wu, Y., “Advantages and challenges of self-assembled monolayer as a hole-selective contact for perovskite solar cells.” Materials Futures 2023, 2 (1), 012105.
〔37〕 Aktas, E.; Phung, N.; Köbler, H.; González, D. A.; Méndez, M.; Kafedjiska, I.; Turren-Cruz, S.-H.; Wenisch, R.; Lauermann, I.; Abate, A., “Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells.” Energy & Environmental Science 2021, 14 (7), 3976-85.
〔38〕 Wang, J.; Liu, Y.; Xiao, X.; Bi, Z.; Lu, Y.; Sheng, G.; Cai, X.; Zhu, Y.; Xu, X.; Xu, G., “An efficient post-treatment strategy with acetylacetone for low temperature CsPbI2Br solar cells.” Solar Energy 2021, 216, 7-13.
〔39〕 Wang, R.; Gao, H.; Yu, R.; Jia, H.; Ma, Z.; He, Z.; Zhang, Y.; Yang, J.; Zhang, L.; Tan, Z. a., “β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells.” The Journal of Physical Chemistry Letters 2021, 12 (49), 11772-78.
〔40〕 Yuan, Y.; Wang, H.; Xu, L.; Zhang, H.; Liu, Y.; Lin, P.; Wang, P.; Wu, X.; Yu, X.; Cui, C., “Imidazole as an Amphoteric Lewis Acid–Base Additive for Efficient CsPbI3 Inorganic Perovskite Solar Cells.” ACS Applied Energy Materials 2023, 6 (21), 10996-1004.
〔41〕 Li, Z.; Jo, B. H.; Hwang, S. J.; Kim, T. H.; Somasundaram, S.; Kamaraj, E.; Bang, J.; Ahn, T. K.; Park, S.; Park, H. J., “Bifacial passivation of organic hole transport interlayer for NiOx‐based p‐i‐n perovskite solar cells.” Advanced Science 2019, 6 (6), 1802163.
〔42〕 Bai, Y.; Chen, H.; Xiao, S.; Xue, Q.; Zhang, T.; Zhu, Z.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z., “Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance.” Advanced Functional Materials 2016, 26 (17), 2950-58.
〔43〕 Wang, Y.; Yang, Y.; Uhlik, F.; Slanina, Z.; Han, D.; Yang, Q.; Yuan, Q.; Yang, Y.; Zhou, D.-Y.; Feng, L., “Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer.” Organic Electronics 2020, 78, 105573.
〔44〕 Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C.
“ Electrochemical Considerations for Determining Absolute Frontier
Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications.” Adv. Mater. 2011, 23, 2367-2371.
〔45〕 Li, T.-Y.; Su, C.; Akula, S. B.; Sun, W.-G.; Chien, H.-M.; Li, W.-R., “New pyridinium ylide dyes for dye sensitized solar cell applications.” Organic letters 2016, 18 (14), 3386-89.
〔46〕 Costa, R. G. d.; Farias, F. R.; Maqueira, L.; Castanho, C.; Carneiro, L. S.; Almeida, J. M.; Buarque, C. D.; Aucélio, R. Q.; Limberger, J., “Synthesis, photophysical and electrochemical properties of novel D-π-D and D-π-A triphenylamino-chalcones and β-arylchalcones.” Journal of the Brazilian Chemical Society 2019, 30 (1), 81-89. |