參考文獻 |
1. Sundaresan, C.; Vebber, M. C.; Brusso, J. L.; Tao, Y.; Alem, S.; Lessard, B. H., Low-Cost Silicon Phthalocyanine as a Non-Fullerene Acceptor for Flexible Large Area Organic Photovoltaics. ACS Omega 2023, 8 (1), 1588-1596.
2. Pascual-San-José, E.; Rodríguez-Martínez, X.; Adel-Abdelaleim, R.; Stella, M.; Martínez-Ferrero, E.; Campoy-Quiles, M., Blade coated P3HT:non-fullerene acceptor solar cells: a high-throughput parameter study with a focus on up-scalability. Journal of Materials Chemistry A 2019, 7 (35), 20369-20382.
3. Tang, C. W., Two-layer organic photovoltaic cell. Applied Physics Letters 1986, 48 (2), 183-185.
4. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258 (5087), 1474-1476.
5. Lin, Y.; Zhan, X., Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons 2014, 1 (5).
6. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X., Non-fullerene acceptors for organic solar cells. Nature Reviews Materials 2018, 3 (3).
7. Mohamed El Amine, B.; Zhou, Y.; Li, H.; Wang, Q.; Xi, J.; Zhao, C., Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency. Energies 2023, 16 (9).
8. Chen, T.; Li, S.; Li, Y.; Chen, Z.; Wu, H.; Lin, Y.; Gao, Y.; Wang, M.; Ding, G.; Min, J.; Ma, Z.; Zhu, H.; Zuo, L.; Chen, H., Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Adv Mater 2023, 35 (21), e2300400.
9. He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J.; Zhang, C.; Zuo, L.; Chen, H., Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy & Environmental Science 2022, 15 (6), 2537-2544.
10. Wu, L. N.; Sui, M. Y.; Xiao, S.; Xie, Y. Z.; Sun, G. Y., Design of single-porphyrin donors toward high open-circuit voltage for organic solar cells via an energy level gradient-distribution screening strategy of fragments: a theoretical study. Phys Chem Chem Phys 2020, 22 (7), 4015-4022.
11. Classen, A.; Chochos, C. L.; Lüer, L.; Gregoriou, V. G.; Wortmann, J.; Osvet, A.; Forberich, K.; McCulloch, I.; Heumüller, T.; Brabec, C. J., The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nature Energy 2020, 5 (9), 711-719.
12. Mahmood, A.; Wang, J. L., Machine learning for high performance organic solar cells: current scenario and future prospects. Energy & Environmental Science 2021, 14 (1), 90-105.
13. Liao, J. M.; Tsai, H. H. G., Extrapolative Machine Learning for Accurate Efficiency Prediction in Non‐Fullerene Ternary Organic Solar Cells: Leveraging Computable Molecular Descriptors in High‐Throughput Virtual Screening. Solar RRL 2024.
14. Pyzer-Knapp, E. O.; Simm, G. N.; Aspuru Guzik, A., A Bayesian approach to calibrating high-throughput virtual screening results and application to organic photovoltaic materials. Materials Horizons 2016, 3 (3), 226-233.
15. Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J., Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533 (7601), 73-6.
16. Sahu, H.; Rao, W.; Troisi, A.; Ma, H., Toward Predicting Efficiency of Organic Solar Cells via Machine Learning and Improved Descriptors. Advanced Energy Materials 2018, 8 (24).
17. Padula, D.; Simpson, J. D.; Troisi, A., Combining electronic and structural features in machine learning models to predict organic solar cells properties. Materials Horizons 2019, 6 (2), 343-349.
18. Sahu, H.; Yang, F.; Ye, X.; Ma, J.; Fang, W.; Ma, H., Designing promising molecules for organic solar cells via machine learning assisted virtual screening. Journal of Materials Chemistry A 2019, 7 (29), 17480-17488.
19. Lee, M. H., Insights from Machine Learning Techniques for Predicting the Efficiency of Fullerene Derivatives-Based Ternary Organic Solar Cells at Ternary Blend Design. Advanced Energy Materials 2019, 9 (26).
20. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. Journal of the American Chemical Society 1992, 114 (25), 10024-10035.
21. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988, 38 (6), 3098-3100.
22. Perdew, J. P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B Condens Matter 1986, 33 (12), 8822-8824.
23. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 2005, 7 (18), 3297-305.
24. Pappenfus, T. M.; Schmidt, J. A.; Koehn, R. E.; Alia, J. D., PBC-DFT Applied to Donor-Acceptor Copolymers in Organic Solar Cells: Comparisons between Theoretical Methods and Experimental Data. Macromolecules 2011, 44 (7), 2354-2357.
25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
26. Liu, T.; Ma, R.; Luo, Z.; Guo, Y.; Zhang, G.; Xiao, Y.; Yang, T.; Chen, Y.; Li, G.; Yi, Y.; Lu, X.; Yan, H.; Tang, B., Concurrent improvement in JSC and VOC in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy & Environmental Science 2020, 13 (7), 2115-2123.
27. Azzouzi, M.; Yan, J.; Kirchartz, T.; Liu, K.; Wang, J.; Wu, H.; Nelson, J., Nonradiative Energy Losses in Bulk-Heterojunction Organic Photovoltaics. Physical Review X 2018, 8 (3).
28. Li, P.; Wang, Z.; Li, W.; Yuan, J.; Chen, R., Design of Thermally Activated Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by Machine Learning-Assisted Virtual Screening. J Phys Chem Lett 2022, 13 (42), 9910-9918.
29. Kim, G.-H.; Lee, C.; Kim, K.; Ko, D.-H., Novel structural feature-descriptor platform for machine learning to accelerate the development of organic photovoltaics. Nano Energy 2023, 106.
30. Baik, S.; Kim, D. W.; Kang, H.-S.; Hong, S. H.; Park, S.; An, B.-K.; Park, S. Y., ITIC derivative acceptors for ternary organic solar cells: fine-tuning of absorption bands, LUMO energy levels, and cascade charge transfer. Sustainable Energy & Fuels 2022, 6 (1), 110-120.
31. Yu, M.; Zhou, Y.-N.; Wang, Q.; Yan, F., Extrapolation validation (EV): a universal validation method for mitigating machine learning extrapolation risk. Digital Discovery 2024, 3 (5), 1058-1067.
32. Shimakawa, H.; Kumada, A.; Sato, M., Extrapolative prediction of small-data molecular property using quantum mechanics-assisted machine learning. npj Computational Materials 2024, 10 (1).
33. Schrier, J.; Norquist, A. J.; Buonassisi, T.; Brgoch, J., In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science. J Am Chem Soc 2023, 145 (40), 21699-21716.
34. Kauwe, S. K.; Graser, J.; Murdock, R.; Sparks, T. D., Can machine learning find extraordinary materials? Computational Materials Science 2020, 174.
35. Hachmann, J.; Olivares-Amaya, R.; Jinich, A.; Appleton, A. L.; Blood-Forsythe, M. A.; Seress, L. R.; Román-Salgado, C.; Trepte, K.; Atahan-Evrenk, S.; Er, S.; Shrestha, S.; Mondal, R.; Sokolov, A.; Bao, Z. A.; Aspuru-Guzik, A., Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry - the Harvard Clean Energy Project. Energy & Environmental Science 2014, 7 (2), 698-704.
36. Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sánchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.; Brockway, A. M.; Aspuru-Guzik, A., The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid. Journal of Physical Chemistry Letters 2011, 2 (17), 2241-2251.
37. Olivares-Amaya, R.; Amador-Bedolla, C.; Hachmann, J.; Atahan-Evrenk, S.; Sánchez-Carrera, R. S.; Vogt, L.; Aspuru-Guzik, A., Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics. Energy & Environmental Science 2011, 4 (12), 4849-4861.
38. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988, 37 (2), 785-789.
39. Cheng, P.; Zhang, M.; Lau, T. K.; Wu, Y.; Jia, B.; Wang, J.; Yan, C.; Qin, M.; Lu, X.; Zhan, X., Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage >1 V and High Efficiency >10% in Fullerene-Free Polymer Solar Cells via Energy Driver. Adv Mater 2017, 29 (11).
40. Su, W. Y.; Fan, Q. P.; Guo, X.; Meng, X. Y.; Bi, Z. Z.; Ma, W.; Zhang, M. J.; Li, Y. F., Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy 2017, 38, 510-517.
41. Jiang, K.; Zhang, G.; Yang, G.; Zhang, J.; Li, Z.; Ma, T.; Hu, H.; Ma, W.; Ade, H.; Yan, H., Multiple Cases of Efficient Nonfullerene Ternary Organic Solar Cells Enabled by an Effective Morphology Control Method. Advanced Energy Materials 2017, 8 (9).
42. Weng, K. K.; Li, C.; Bi, P. Q.; Ryu, H. S.; Guo, Y. K.; Hao, X. T.; Zhao, D. H.; Li, W. W.; Woo, H. Y.; Sun, Y. M., Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. Journal of Materials Chemistry A 2019, 7 (8), 3552-3557.
43. Xia, P.; Wu, M. L.; Zhang, S. X.; Hu, J.; Chen, L.; Bu, T. L.; Yi, J. P.; Wu, D.; Xia, J. L., High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent. Organic Electronics 2019, 73, 205-211.
44. Chen, Y. S.; Ye, P.; Jia, X. L.; Gu, W. X.; Xu, X. Z.; Wu, X. X.; Wu, J. F.; Liu, F.; Zhu, Z. G.; Huang, H., Tuning for high performance organic ternary solar cells with non-fullerene acceptor alloys. Journal of Materials Chemistry A 2017, 5 (37), 19697-19702.
45. Liu, T.; Guo, Y.; Yi, Y.; Huo, L.; Xue, X.; Sun, X.; Fu, H.; Xiong, W.; Meng, D.; Wang, Z.; Liu, F.; Russell, T. P.; Sun, Y., Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10. Adv Mater 2016, 28 (45), 10008-10015.
46. Yu, R.; Zhang, S.; Yao, H.; Guo, B.; Li, S.; Zhang, H.; Zhang, M.; Hou, J., Two Well-Miscible Acceptors Work as One for Efficient Fullerene-Free Organic Solar Cells. Adv Mater 2017, 29 (26).
47. Xiao, L. G.; He, B.; Hu, Q.; Maserati, L.; Zhao, Y.; Yang, B.; Kolaczkowski, M. A.; Anderson, C. L.; Borys, N. J.; Klivansky, L. M.; Chen, T. L.; Schwartzberg, A. M.; Russell, T. P.; Cao, Y.; Peng, X. B.; Liu, Y., Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. Joule 2018, 2 (10), 2154-2166.
48. Jiang, H.; Li, X.; Wang, J.; Qiao, S.; Zhang, Y.; Zheng, N.; Chen, W.; Li, Y.; Yang, R., Ternary Polymer Solar Cells with High Efficiency of 14.24% by Integrating Two Well‐Complementary Nonfullerene Acceptors. Advanced Functional Materials 2019, 29 (34).
49. Lv, R. Z.; Chen, D.; Liao, X. F.; Chen, L.; Chen, Y. W., A Terminally Tetrafluorinated Nonfullerene Acceptor for Well-Performing Alloy Ternary Solar Cells. Advanced Functional Materials 2019, 29 (12).
50. Yu, B.-h.; Wang, J.; Ma, X.-l.; Zeng, S.-m.; Hu, S.-y.; Zhang, F.-j., Inverted Ternary Organic Photovoltaics with Alloyed Acceptor Exhibiting 12.29% Efficiency. physica status solidi (RRL) – Rapid Research Letters 2019, 13 (9).
51. Yin, H.; Chiu, K. L.; Bi, P. Q.; Li, G.; Yan, C. Q.; Tang, H.; Zhang, C. J.; Xiao, Y. Q.; Zhang, H. K.; Yu, W.; Hu, H. L.; Lu, X. H.; Hao, X. T.; So, S. K., Enhanced Electron Transport and Heat Transfer Boost Light Stability of Ternary Organic Photovoltaic Cells Incorporating Non-Fullerene Small Molecule and Polymer Acceptors. Adv Electron Mater 2019, 5 (10).
52. Pan, F. L.; Zhang, L. J.; Jiang, H. Y.; Yuan, D.; Nian, Y. W.; Cao, Y.; Chen, J. W., As-cast ternary polymer solar cells based on a nonfullerene acceptor and its fluorinated counterpart showing improved efficiency and good thickness tolerance. Journal of Materials Chemistry A 2019, 7 (16), 9798-9806.
53. Wang, J.; Gao, W.; An, Q.; Zhang, M.; Ma, X.; Hu, Z.; Zhang, J.; Yang, C.; Zhang, F., Ternary non-fullerene polymer solar cells with an efficiency of 11.6% by simultaneously optimizing photon harvesting and phase separation. Journal of Materials Chemistry A 2018, 6 (25), 11751-11758.
54. Zhang, M.; Gao, W.; Zhang, F.; Mi, Y.; Wang, W.; An, Q.; Wang, J.; Ma, X.; Miao, J.; Hu, Z.; Liu, X.; Zhang, J.; Yang, C., Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%. Energy & Environmental Science 2018, 11 (4), 841-849.
55. An, Q. S.; Zhang, F. J.; Gao, W.; Sun, Q. Q.; Zhang, M.; Yang, C. L.; Zhang, J., High-efficiency and air stable fullerene-free ternary organic solar cells. Nano Energy 2018, 45, 177-183.
56. Cheng, P.; Wang, J.; Zhang, Q.; Huang, W.; Zhu, J.; Wang, R.; Chang, S. Y.; Sun, P.; Meng, L.; Zhao, H.; Cheng, H. W.; Huang, T.; Liu, Y.; Wang, C.; Zhu, C.; You, W.; Zhan, X.; Yang, Y., Unique Energy Alignments of a Ternary Material System toward High-Performance Organic Photovoltaics. Adv Mater 2018, 30 (28), e1801501.
57. Yin, H.; Zhang, C.; Hu, H.; Karuthedath, S.; Gao, Y.; Tang, H.; Yan, C.; Cui, L.; Fong, P. W. K.; Zhang, Z.; Gao, Y.; Yang, J.; Xiao, Z.; Ding, L.; Laquai, F.; So, S. K.; Li, G., Highly Crystalline Near-Infrared Acceptor Enabling Simultaneous Efficiency and Photostability Boosting in High-Performance Ternary Organic Solar Cells. ACS Appl Mater Interfaces 2019, 11 (51), 48095-48102.
58. Jiang, W.; Yu, R.; Liu, Z.; Peng, R.; Mi, D.; Hong, L.; Wei, Q.; Hou, J.; Kuang, Y.; Ge, Z., Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Adv Mater 2018, 30 (1).
59. An, Q.; Zhang, J.; Gao, W.; Qi, F.; Zhang, M.; Ma, X.; Yang, C.; Huo, L.; Zhang, F., Efficient Ternary Organic Solar Cells with Two Compatible Non-Fullerene Materials as One Alloyed Acceptor. Small 2018, 14 (45), e1802983.
60. Kan, B.; Yi, Y. Q. Q.; Wan, X.; Feng, H.; Ke, X.; Wang, Y.; Li, C.; Chen, Y., Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions. Advanced Energy Materials 2018, 8 (22).
61. Zheng, N. N.; Mahmood, K.; Zhong, W. K.; Liu, F.; Zhu, P.; Wang, Z. F.; Xie, B. M.; Chen, Z. M.; Zhang, K.; Ying, L.; Huang, F.; Cao, Y., Improving the efficiency and stability of non-fullerene polymer solar cells by using N2200 as the Additive. Nano Energy 2019, 58, 724-731.
62. Liu, T.; Luo, Z.; Chen, Y.; Yang, T.; Xiao, Y.; Zhang, G.; Ma, R.; Lu, X.; Zhan, C.; Zhang, M.; Yang, C.; Li, Y.; Yao, J.; Yan, H., A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy & Environmental Science 2019, 12 (8), 2529-2536.
63. Gao, J.; Ming, R.; An, Q.; Ma, X.; Zhang, M.; Miao, J.; Wang, J.; Yang, C.; Zhang, F., Ternary organic solar cells with J71 as donor and alloyed acceptors exhibiting 13.16% efficiency. Nano Energy 2019, 63.
64. Wang, B.; Fu, Y. Y.; Yang, Q. Q.; Wu, J.; Liu, H.; Tang, H.; Xie, Z. Y., High-efficiency ternary nonfullerene organic solar cells fabricated with a near infrared acceptor enhancing exciton utilization and extending absorption. Journal of Materials Chemistry C 2019, 7 (34), 10498-10506.
65. Chang, Y.; Lau, T.-K.; Pan, M.-A.; Lu, X.; Yan, H.; Zhan, C., The synergy of host–guest nonfullerene acceptors enables 16%-efficiency polymer solar cells with increased open-circuit voltage and fill-factor. Materials Horizons 2019, 6 (10), 2094-2102.
66. Du, B.; Geng, R.; Li, W.; Li, D.; Mao, Y.; Chen, M.; Zhang, X.; Smith, J. A.; Kilbride, R. C.; O’Kane, M. E.; Liu, D.; Lidzey, D. G.; Tang, W.; Wang, T., 13.9% Efficiency Ternary Nonfullerene Organic Solar Cells Featuring Low-Structural Order. ACS Energy Letters 2019, 4 (10), 2378-2385.
67. Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.; Yu, R.; Gao, B.; Zhang, S.; Hou, J., Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Small-Molecule Acceptors. Adv Mater 2018, 30 (28), e1800613.
68. Li, K.; Wu, Y.; Tang, Y.; Pan, M. A.; Ma, W.; Fu, H.; Zhan, C.; Yao, J., Ternary Blended Fullerene‐Free Polymer Solar Cells with 16.5% Efficiency Enabled with a Higher‐LUMO‐Level Acceptor to Improve Film Morphology. Advanced Energy Materials 2019, 9 (33).
69. Zeng, A.; Pan, M.; Lin, B.; Lau, T.-K.; Qin, M.; Li, K.; Ma, W.; Lu, X.; Zhan, C.; Yan, H., A Nonfullerene Acceptor with Alkylthio‐ and Dimethoxy‐Thiophene‐Groups Yielding High‐Performance Ternary Organic Solar Cells. Solar RRL 2019, 4 (1).
70. Yan, C.; Liu, T.; Chen, Y.; Ma, R.; Tang, H.; Li, G.; Li, T.; Xiao, Y.; Yang, T.; Lu, X.; Zhan, X.; Yan, H.; Li, G.; Tang, B., ITC‐2Cl: A Versatile Middle‐Bandgap Nonfullerene Acceptor for High‐Efficiency Panchromatic Ternary Organic Solar Cells. Solar RRL 2019, 4 (1), 1900377.
71. Cai, Y.; Meng, L.; Gao, H.; Guo, Z.; Zheng, N.; Xie, Z.; Zhang, H.; Li, C.; Wan, X.; Chen, Y., Achieving organic solar cells with efficiency over 14% based on a non-fullerene acceptor incorporating a cyclopentathiophene unit fused backbone. Journal of Materials Chemistry A 2020, 8 (10), 5194-5199.
72. Hu, Z.; Yang, L.; Gao, W.; Gao, J.; Xu, C.; Zhang, X.; Wang, Z.; Tang, W.; Yang, C.; Zhang, F., Over 15.7% Efficiency of Ternary Organic Solar Cells by Employing Two Compatible Acceptors with Similar LUMO Levels. Small 2020, 16 (17), e2000441.
73. Su, D.; Pan, M.-A.; Liu, Z.; Lau, T.-K.; Li, X.; Shen, F.; Huo, S.; Lu, X.; Xu, A.; Yan, H.; Zhan, C., A Trialkylsilylthienyl Chain-Substituted Small-Molecule Acceptor with Higher LUMO Level and Reduced Band Gap for Over 16% Efficiency Fullerene-Free Ternary Solar Cells. Chemistry of Materials 2019, 31 (21), 8908-8917.
74. Ma, R. J.; Chen, Y. Z.; Liu, T.; Xiao, Y. Q.; Luo, Z. H.; Zhang, M. J.; Luo, S. W.; Lu, X. H.; Zhang, G. Y.; Li, Y. F.; Yan, H.; Chen, K., Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C 2020, 8 (3), 909-915.
75. An, Q.; Ma, X.; Gao, J.; Zhang, F., Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Sci Bull (Beijing) 2019, 64 (8), 504-506.
76. Song, J.; Li, C.; Zhu, L.; Guo, J.; Xu, J.; Zhang, X.; Weng, K.; Zhang, K.; Min, J.; Hao, X.; Zhang, Y.; Liu, F.; Sun, Y., Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Adv Mater 2019, 31 (52), e1905645.
77. Li, D.; Chen, X.; Cai, J.; Li, W.; Chen, M.; Mao, Y.; Du, B.; Smith, J. A.; Kilbride, R. C.; O’Kane, M. E.; Zhang, X.; Zhuang, Y.; Wang, P.; Wang, H.; Liu, D.; Jones, R. A. L.; Lidzey, D. G.; Wang, T., Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency. Science China Chemistry 2020, 63 (10), 1461-1468.
78. Chen, X.; Kan, B.; Kan, Y.; Zhang, M.; Jo, S. B.; Gao, K.; Lin, F.; Liu, F.; Peng, X.; Cao, Y.; Jen, A. K. Y., As‐Cast Ternary Organic Solar Cells Based on an Asymmetric Side‐Chains Featured Acceptor with Reduced Voltage Loss and 14.0% Efficiency. Advanced Functional Materials 2020, 30 (11).
79. Huang, T.; Zhang, Z.; Wang, D.; Zhang, Y.; Deng, Z.; Huang, Y.; Liao, Q.; Zhang, J., 18.7% Efficiency Ternary Organic Solar Cells Using Two Non-Fullerene Acceptors with Excellent Compatibility. ACS Applied Energy Materials 2023, 6 (5), 3126-3134.
80. Keshtov, M. L.; Khokhlov, A. R.; Shikin, D. Y.; Alekseev, V.; Chayal, G.; Dahiya, H.; Singh, M. K.; Chen, F. C.; Sharma, G. D., Medium Bandgap Nonfullerene Acceptor for Efficient Ternary Polymer Solar Cells with High Open-Circuit Voltage. ACS Omega 2023, 8 (2), 1989-2000.
81. Wang, R.; Zhang, D. Y.; Zhang, X. H.; Yu, J. S., Achieving high-performance ternary organic solar cells by adding a high hole-mobility non-fullerene acceptor. Dyes and Pigments 2022, 199.
82. Su, N.; Chen, J.; Peng, M.; Li, G.; Pankow, R. M.; Zheng, D.; Ding, J.; Facchetti, A.; Marks, T. J., π-Extension and chlorination of non-fullerene acceptors enable more readily processable and sustainable high-performance organic solar cells. Journal of Energy Chemistry 2023, 79, 321-329.
83. Wang, Y.; Huang, T.; Wang, D.; Guan, H.; Geng, S.; Cao, Z.; Ding, Z.; Li, J.; Zhang, J., Third component with a high LUMO energy level enables 17.69% efficiency in ternary organic solar cells. Optical Materials 2023, 135.
84. Luo, D.; Jiang, Z. Y.; Yang, W. L.; Guo, X. G.; Li, X. H.; Zhou, E. J.; Li, G. Q.; Li, L. Q.; Duan, C. H.; Shan, C. W.; Wang, Z. J.; Li, Y. H.; Xu, B. M.; Kyaw, A. K. K., Dual-functional ambipolar non-fused ring electron acceptor as third component and designing similar molecular structure between two acceptors for high-performance ternary organic solar cells. Nano Energy 2022, 98.
85. Jeon, S. J.; Kim, Y. H.; Kim, I. N.; Yang, N. G.; Yun, J. H.; Moon, D. K., Utilizing 3,4-ethylenedioxythiophene (EDOT)-bridged non-fullerene acceptors for efficient organic solar cells. Journal of Energy Chemistry 2022, 65, 194-204.
86. Lee, C.; Lee, J. H.; Lee, H. H.; Nam, M.; Ko, D. H., Over 30% Efficient Indoor Organic Photovoltaics Enabled by Morphological Modification Using Two Compatible Non‐Fullerene Acceptors. Advanced Energy Materials 2022, 12 (22).
87. Wang, X.; Zhai, X.; Kang, X.; Ding, X.; Gao, C.; Jing, X.; Yu, L.; Sun, M., High‐Performance Ternary Semitransparent Polymer Solar Cells with Different Bandgap Third Component as Non‐Fullerene Guest Acceptor. Solar RRL 2022, 6 (7).
88. Tan, H.; Yuan, B.; Shao, Z.; Deng, W.; Yu, J.; Xiao, M.; Wu, H.; Zhu, W., A simple-structure small-molecule acceptor enables over 18% efficiency ternary polymer solar cells with a broad composition tolerance. Chemical Engineering Journal 2022, 445.
89. Deng, M.; Xu, X.; Duan, Y.; Yu, L.; Li, R.; Peng, Q., Y-Type Non-Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Adv Mater 2023, 35 (10), e2210760.
90. Liu, L. Z.; Chao, P. J.; Mo, D. Z.; He, F., Chlorinated polymer solar cells simultaneously enhanced by fullerene and non-fullerene ternary strategies. Journal of Energy Chemistry 2021, 54, 620-625.
91. Ke, X.; Meng, L.; Wan, X.; Cai, Y.; Gao, H.-H.; Yi, Y.-Q.-Q.; Guo, Z.; Zhang, H.; Li, C.; Chen, Y., A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%. Nano Energy 2020, 75.
92. Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H. L.; Chen, H.; Li, C. Z., High-Performance Semitransparent Organic Solar Cells with Excellent Infrared Reflection and See-Through Functions. Adv Mater 2020, 32 (32), e2001621.
93. Liao, X. F.; Cui, Y. J.; Shi, X. L.; Yao, Z. Y.; Zhao, H.; An, Y. K.; Zhu, P. P.; Guo, Y. X.; Fei, X.; Zuo, L. J.; Gao, K.; Ling, R. C.; Xie, Q.; Chen, L.; Ma, W.; Chen, Y. W.; Jen, A. K. Y., The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers 2020, 4 (5), 1507-1518.
94. Wan, J.; Zhang, L. F.; He, Q. N.; Liu, S. Q.; Huang, B.; Hu, L.; Zhou, W. H.; Chen, Y. W., High-Performance Pseudoplanar Heterojunction Ternary Organic Solar Cells with Nonfullerene Alloyed Acceptor. Advanced Functional Materials 2020, 30 (14).
95. Ren, M.; Zhang, G.; Chen, Z.; Xiao, J.; Jiao, X.; Zou, Y.; Yip, H. L.; Cao, Y., High-Performance Ternary Organic Solar Cells with Controllable Morphology via Sequential Layer-by-Layer Deposition. ACS Appl Mater Interfaces 2020, 12 (11), 13077-13086.
96. Gao, J.; Gao, W.; Ma, X.; Hu, Z.; Xu, C.; Wang, X.; An, Q.; Yang, C.; Zhang, X.; Zhang, F., Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy & Environmental Science 2020, 13 (3), 958-967.
97. Song, C. E.; Ham, H.; Noh, J.; Lee, S. K.; Kang, I. N., Efficiency enhancement of a fluorinated wide-bandgap polymer for ternary nonfullerene organic solar cells. Polymer 2020, 188.
98. Lee, S. M.; Kumari, T.; Lee, B.; Cho, Y.; Lee, J.; Oh, J.; Jeong, M.; Jung, S.; Yang, C., Horizontal-, Vertical-, and Cross-Conjugated Small Molecules: Conjugated Pathway-Performance Correlations along Operation Mechanisms in Ternary Non-Fullerene Organic Solar Cells. Small 2020, 16 (5), e1905309.
99. Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C.-Z.; Li, H.; Hou, J.; Chen, H., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy & Environmental Science 2020, 13 (2), 635-645.
100. Zhang, J. Y.; Liu, W. R.; Zhou, G. Q.; Yi, Y. P.; Xu, S. J.; Liu, F.; Zhu, H. M.; Zhu, X. Z., Accurate Determination of the Minimum HOMO Offset for Efficient Charge Generation using Organic Semiconducting Alloys. Advanced Energy Materials 2020, 10 (5).
101. Duan, L. P.; Zhang, Y.; Yi, H. M.; Haque, F.; Deng, R.; Guan, H. L.; Zou, Y. P.; Uddin, A., Trade-Off between Exciton Dissociation and Carrier Recombination and Dielectric Properties in Y6-Sensitized Nonfullerene Ternary Organic Solar Cells. Energy Technology 2020, 8 (1).
102. Zhan, L. L.; Li, S. X.; Zhang, S. H.; Lau, T. K.; Andersen, T. R.; Lu, X. H.; Shi, M. M.; Li, C. Z.; Li, G.; Chen, H. Z., Combining Fused-Ring and Unfused-Core Electron Acceptors Enables Efficient Ternary Organic Solar Cells with Enhanced Fill Factor and Broad Compositional Tolerance. Solar Rrl 2019, 3 (12).
103. Liu, Z. Y.; Wang, N., Enhanced Performance and Stability of Ternary Organic Solar Cells Utilizing Two Similar Structure Blend Fullerene-Free Molecules as Electron Acceptor. Advanced Optical Materials 2019, 7 (23).
104. Chang, Y.; Zhang, X.; Tang, Y.; Gupta, M.; Su, D.; Liang, J.; Yan, D.; Li, K.; Guo, X.; Ma, W.; Yan, H.; Zhan, C., 14%-efficiency fullerene-free ternary solar cell enabled by designing a short side-chain substituted small-molecule acceptor. Nano Energy 2019, 64.
105. Zhang, J.; Liu, W.; Zhang, M.; Liu, Y.; Zhou, G.; Xu, S.; Zhang, F.; Zhu, H.; Liu, F.; Zhu, X., Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells. iScience 2019, 19, 883-893.
106. He, L.; Wan, C.; Dong, H. Y.; Zhang, X. H.; Huang, J., Enhancing Open-Circuit Voltage and Charge Transportation for Ternary Organic Solar Cells With Energy Cascade Double Nonfullerene Acceptors. Ieee Journal of Photovoltaics 2019, 9 (5), 1290-1296.
107. Wu, L.; Xie, L.; Tian, H.; Peng, R.; Huang, J.; Fanady, B.; Song, W.; Tan, S.; Bi, W.; Ge, Z., Efficient ternary organic solar cells based on a twin spiro-type non-fullerene acceptor. Sci Bull (Beijing) 2019, 64 (15), 1087-1094.
108. Cheng, H. W.; Zhang, H.; Lin, Y. C.; She, N. Z.; Wang, R.; Chen, C. H.; Yuan, J.; Tsao, C. S.; Yabushita, A.; Zou, Y.; Gao, F.; Cheng, P.; Wei, K. H.; Yang, Y., Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Lett 2019, 19 (8), 5053-5061.
109. Bi, P. Q.; Hall, C. R.; Yin, H.; So, S. K.; Smith, T. A.; Ghiggino, K. P.; Hao, X. T., Resolving the Mechanisms of Photocurrent Improvement in Ternary Organic Solar Cells. Journal of Physical Chemistry C 2019, 123 (30), 18294-18302.
110. Guo, X. W.; Li, D. Q.; Zhang, Y. X.; Jan, M.; Xu, J. Q.; Wang, Z. Q.; Li, B.; Xiong, S. B.; Li, Y. Q.; Liu, F.; Tang, J. X.; Duan, C. G.; Fahlman, M.; Bao, Q. Y., Understanding the effect of N2200 on performance of J71: ITIC bulk heterojunction in ternary non-fullerene solar cells. Organic Electronics 2019, 71, 65-71.
111. Tamilavan, V.; Liu, Y. L.; Lee, J.; Shin, I.; Jung, Y. K.; Lee, B. R.; Jeong, J. H.; Park, S. H., Efficient Polymeric Donor for Both Visible and Near-Infrared Absorbing Organic Solar Cells. Acs Applied Energy Materials 2019, 2 (6), 4284-4291.
112. Tang, F.; Wu, K. L.; Zhou, Z. J.; Wang, G.; Zhao, B.; Tan, S. T., Alkynyl-Functionalized Pyrene-Cored Perylene Diimide Electron Acceptors for Efficient Nonfullerene Organic Solar Cells. Acs Applied Energy Materials 2019, 2 (5), 3918-3926.
113. Li, X.; Du, X.; Lin, H.; Kong, X.; Li, L.; Zhou, L.; Zheng, C.; Tao, S., Ternary System with Intermolecular Hydrogen Bond: Efficient Strategy to High-Performance Nonfullerene Organic Solar Cells. ACS Appl Mater Interfaces 2019, 11 (17), 15598-15606.
114. Zhang, K.; Liu, Z. Y.; Wang, N., Highly efficient inverted ternary organic solar cells with polymer fullerene-free acceptor as a third component material. Journal of Power Sources 2019, 413, 391-398.
115. Qin, R.; Guo, D.; Li, M.; Li, G.; Bo, Z.; Wu, J., Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials 2018, 2 (1), 305-311.
116. Jiang, H. X.; Li, X. M.; Liang, Z. Z.; Huang, G. Y.; Chen, W. C.; Zheng, N.; Yang, R. Q., Employing structurally similar acceptors as crystalline modulators to construct high efficiency ternary organic solar cells. Journal of Materials Chemistry A 2019, 7 (13), 7760-7765.
117. Du, X. Y.; Zhao, J. W.; Zhang, H.; Lu, X.; Zhou, L.; Chen, Z. H.; Lin, H.; Zheng, C. J.; Tao, S. L., Modulating the molecular packing and distribution enables fullerene-free ternary organic solar cells with high efficiency and long shelf-life. Journal of Materials Chemistry A 2019, 7 (35), 20139-20150.
118. Liu, Z. Y.; Wang, N., Small energy loss in ternary organic solar cells with a blend of cascade energy levels: two fullerene-free acceptors as the electron acceptor. Journal of Materials Chemistry C 2019, 7 (32), 10039-10048.
119. Huang, H.; Li, X. J.; Chen, S. S.; Qiu, B. B.; Du, J. Q.; Meng, L.; Zhang, Z. J.; Yang, C.; Li, Y. F., Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. Journal of Materials Chemistry A 2019, 7 (48), 27423-27431.
120. Xu, X. P.; Bi, Z. Z.; Ma, W.; Zhang, G. J.; Yan, H.; Li, Y.; Peng, Q., Stable large area organic solar cells realized by using random terpolymers donors combined with a ternary blend. Journal of Materials Chemistry A 2019, 7 (23), 14199-14208.
121. Oh, S.; Song, C. E.; Lee, T.; Cho, A.; Lee, H. K.; Lee, J. C.; Moon, S. J.; Lim, E.; Lee, S. K.; Shin, W. S., Enhanced efficiency and stability of PTB7-Th-based multi-non-fullerene solar cells enabled by the working mechanism of the coexisting alloy-like structure and energy transfer model. Journal of Materials Chemistry A 2019, 7 (38), 22044-22053.
122. Xue, P. Y.; Zhang, J. X.; Xin, J. M.; Rech, E. O.; Li, T. F.; Meng, K. X.; Wang, J. Y.; Ma, W.; You, W.; Marder, S. R.; Han, R. P. S.; Zhan, X. W., Effects of Terminal Groups in Third Components on Performance of Organic Solar Cells. Acta Physico-Chimica Sinica 2019, 35 (3), 275-283.
123. Gong, Y.; Chang, K.; Chen, C.; Han, M.; Zhan, X.; Min, J.; Jiao, X.; Li, Q.; Li, Z., Pyrene-fused PDI based ternary solar cells: high power conversion efficiency over 10%, and improved device thermal stability. Materials Chemistry Frontiers 2019, 3 (1), 93-102.
124. Liu, T.; Luo, Z. H.; Fan, Q. P.; Zhang, G. Y.; Zhang, L.; Gao, W.; Guo, X.; Ma, W.; Zhang, M. J.; Yang, C. L.; Li, Y. F.; Yan, H., Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy & Environmental Science 2018, 11 (11), 3275-3282.
125. Tang, D. S.; Wan, J. H.; Xu, X. P.; Lee, Y. W.; Woo, H. Y.; Feng, K.; Peng, Q., Naphthobistriazole-based wide bandgap donor polymers for efficient non-fullerene organic solar cells: Significant fine-tuning absorption and energy level by backbone fluorination. Nano Energy 2018, 53, 258-269.
126. Gao, B. W.; Yao, H. F.; Hou, J. X.; Yu, R. N.; Hong, L.; Xu, Y.; Hou, J. H., Multi-component non-fullerene acceptors with tunable bandgap structures for efficient organic solar cells. Journal of Materials Chemistry A 2018, 6 (46), 23644-23649.
127. Bi, P.; Zhang, S.; Chen, Z.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J.; Qin, J.; Hong, L.; Hao, X.; Hou, J., Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5 (9), 2408-2419.
128. Zhan, L.; Li, S.; Xia, X.; Li, Y.; Lu, X.; Zuo, L.; Shi, M.; Chen, H., Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18. Adv Mater 2021, 33 (12), e2007231.
129. Liu, F.; Zhou, L.; Liu, W.; Zhou, Z.; Yue, Q.; Zheng, W.; Sun, R.; Liu, W.; Xu, S.; Fan, H.; Feng, L.; Yi, Y.; Zhang, W.; Zhu, X., Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy. Adv Mater 2021, 33 (27), e2100830.
130. Ma, X.; Zeng, A.; Gao, J.; Hu, Z.; Xu, C.; Son, J. H.; Jeong, S. Y.; Zhang, C.; Li, M.; Wang, K.; Yan, H.; Ma, Z.; Wang, Y.; Woo, H. Y.; Zhang, F., Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6 : Y6-1O as acceptor. Natl Sci Rev 2021, 8 (8), nwaa305.
131. Wang, X.; Sun, Q.; Gao, J.; Ma, X.; Son, J. H.; Jeong, S. Y.; Hu, Z.; Niu, L.; Woo, H. Y.; Zhang, J.; Zhang, F., Ternary Organic Photovoltaic Cells Exhibiting 17.59% Efficiency with Two Compatible Y6 Derivations as Acceptor. Solar RRL 2021, 5 (3).
132. Ma, Q.; Jia, Z.; Meng, L.; Zhang, J.; Zhang, H.; Huang, W.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z.; Li, Y., Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78.
133. Ma, R. J.; Liu, T.; Luo, Z. H.; Gao, K.; Chen, K.; Zhang, G. Y.; Gao, W.; Xiao, Y. Q.; Lau, T. K.; Fan, Q. P.; Chen, Y. Z.; Ma, L. K.; Sun, H. L.; Cai, G. L.; Yang, T.; Lu, X. H.; Wang, E. G.; Yang, C. L.; Jen, A. K. Y.; Yan, H., Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. Acs Energy Letters 2020, 5 (8), 2711-2720.
134. An, Q.; Wang, J.; Gao, W.; Ma, X.; Hu, Z.; Gao, J.; Xu, C.; Hao, M.; Zhang, X.; Yang, C.; Zhang, F., Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci Bull (Beijing) 2020, 65 (7), 538-545.
135. Tan, H.; Fan, W.; Zhu, M.; Zhu, J.; Wang, X.; Xiao, M.; Yang, R.; Zhu, W.; Yu, J., Nonfused Ring Electron Acceptors for Ternary Polymer Solar Cells with Low Energy Loss and Efficiency Over 18. Small 2023, 19 (52), e2304368.
136. Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Bi, Z.; Ma, W.; Chen, Z.; Zhou, G.; Zhu, H.; Shi, M.; Zuo, L.; Chen, H., Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 2022, 6 (3), 662-675.
137. Chen, Z.; Zhu, J.; Yang, D.; Song, W.; Shi, J.; Ge, J.; Guo, Y.; Tong, X.; Chen, F.; Ge, Z., Isomerization strategy on a non-fullerene guest acceptor for stable organic solar cells with over 19% efficiency. Energy & Environmental Science 2023, 16 (7), 3119-3127.
138. Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Chen, Y.; Fang, J.; Ma, C. Q.; Zhou, G.; Zhu, H.; Zuo, L.; Qiu, H.; Yin, S.; Chen, H., Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics. Advanced Energy Materials 2022, 12 (39).
139. Fan, Q.; Ma, R.; Yang, J.; Gao, J.; Bai, H.; Su, W.; Liang, Z.; Wu, Y.; Tang, L.; Li, Y.; Wu, Q.; Wang, K.; Yan, L.; Zhang, R.; Gao, F.; Li, G.; Ma, W., Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23 % Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer. Angew Chem Int Ed Engl 2023, 62 (36), e202308307.
140. Liu, K.; Jiang, Y.; Liu, F.; Ran, G.; Huang, F.; Wang, W.; Zhang, W.; Zhang, C.; Hou, J.; Zhu, X., Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. Adv Mater 2023, 35 (32), e2300363.
141. Chen, H.; Jeong, S. Y.; Tian, J.; Zhang, Y.; Naphade, D. R.; Alsufyani, M.; Zhang, W.; Griggs, S.; Hu, H.; Barlow, S.; Woo, H. Y.; Marder, S. R.; Anthopoulos, T. D.; McCulloch, I.; Lin, Y., A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy & Environmental Science 2023, 16 (3), 1062-1070.
142. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J., Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv Mater 2021, 33 (41), e2102420. |