博碩士論文 111223037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.119.19.181
姓名 廖建銘(Jian-Ming Liao)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Machine Learning Accelerates the Development of Emerging Clean Energy Solar Cells)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-26以後開放)
摘要(中) 近年來,全球的快速發展極大地增加了對替代能源特別是太陽能的需求。有機太陽能電池(OSCs)和染料敏化太陽能電池(DSCs)等新一代光伏技術因其低成本和多樣化的材料選擇而備受關注。尤其重要的是減少對環境有害的重金屬,例如鈣鈦礦太陽能電池 (PSC) 中的金屬鉛。
在這項研究中,我們利用基於樹的 XGBoost 和人工神經網路 (ANN) 技術開發了四種基於機器學習的預測模型。這些模型採用源自實驗和 DFT 計算的分子描述子 (MD),對三元 OSC 材料進行高通量虛擬篩選 (HTVS)。 HTVS 分析使用了兩個不同的資料庫:第一個包含根據現有資料庫重建的 429,413 個獨特的三元 OSC 系統;第二個數據來自哈佛清潔能源計畫資料庫 (CEPDB),其中包括約 230 萬個獨特的供體材料分子。這四個 ML 模型在密切相關的分子測試集(內插)上展示了顯著的功率轉換效率 (PCE) 預測準確性。然而,XGBoost 模型在預測與訓練集中明顯不同的分子方面表現出有限的能力。相反,ANN 模型在 HTVS 中表現出強大的外推能力,成功預測了新的潛在三元 OSC 系統,PCE 超過 20%。這項研究透過高效的HTVS,加速了OSC分子材料和先進三元OSC技術的發展。
另一方面,提出了一種專門為鋅卟啉敏化太陽能電池設計的精確、預測和可解釋的機器學習模型。該模型使用理論上可計算、高效且可重複使用的 MD 來應對這些挑戰。它在17個新設計的電池的「盲測」中表現出色,實現了1.02%的平均絕對誤差(MAE)。值得注意的是,十種染料的預測誤差在 1% 以內。這些結果驗證了機器學習模型及其在探索鋅卟啉的未知化學空間中的重要性。 SHAP 分析確定了與實驗觀察結果密切相關的關鍵 MD,為 DSC 中染料的合理設計提供了寶貴的化學指導。這些模型可實現高效預測,顯著縮短光伏電池的分析時間。具有優異 PCE 的有前景的鋅卟啉染料已被鑑定出來,有助於高通量虛擬篩選。此預測工具可透過 https://ai-meta.chem.ncu.edu.tw/dsc-meta 公開存取。
摘要(英) In recent years, the rapid global development has significantly increased the demand for alternative energy sources, particularly solar energy. The new generation of photovoltaic technologies such as Organic Solar Cells (OSC) and Dye-Sensitized Solar Cells (DSC) have attracted attention due to their low cost and diverse material options. Particularly important is the reduction of environmentally harmful heavy metals, such as lead in perovskite solar cells.
In this study, we developed four predictive models based on machine learning, utilizing tree-based XGBoost and Artificial Neural Networks (ANN) techniques. These models employ molecular descriptors (MDs) derived from experimental and DFT calculations, to perform high throughput virtual screening (HTVS) of ternary OSC materials. The HTVS analysis utilized two distinct databases: the first comprised 429,413 unique ternary OSC systems reconstructed from an existing database; the second was drawn from the Harvard Clean Energy Project Database (CEPDB), which includes about 2.3 million unique donor material molecules. These four ML models demonstrated significant power conversion efficiency (PCE) prediction accuracy on closely related molecular test sets (interpolation). However, the XGBoost model showed limited capability in predicting molecules significantly different from those in the training set. Conversely, the ANN model exhibited strong extrapolative ability in HTVS, successfully predicting new potential ternary OSC systems with over 20% PCE. This study, through efficient HTVS, has accelerated the development of OSC molecular materials and advanced ternary OSC technology.
On the other hand, a precise, predictive, and interpretable machine learning model specifically designed for Zn-porphyrin-sensitized solar cells was proposed. This model uses theoretically computable, efficient, and reusable MDs to address these challenges. It performed excellently in the "blind test" of 17 newly designed cells, achieving an average absolute error (MAE) of 1.02%. Notably, the predictive error for ten types of dyes was within 1%. These results validate the machine learning models and their importance in exploring the unknown chemical space of Zn-porphyrins. SHAP analysis identified key MDs that closely correspond with experimental observations, providing valuable chemical guidance for the rational design of dyes in DSCs. These models enable efficient predictive, significantly reducing the analysis time for photovoltaic cells. Promising Zn-porphyrin dyes with excellent PCE have been identified, facilitating high-throughput virtual screening. This predictive tool is publicly accessible at https://ai-meta.chem.ncu.edu.tw/dsc-meta.
關鍵字(中) ★ 機器學習
★ 三元有機太陽能電池
★ 乾淨能源
★ 鋅卟啉敏化太陽能電池
關鍵字(英) ★ Machine Learning
★ Ternary Organic Solar Cells
★ Clean Energy
★ Porphyrin-Sensitized Solar Cells
論文目次 Contents
摘要 I
Abstract II
List of Figures VI
List of Schemes IX
List of Tables X
Introduction 1

Chapter 1-Extrapolative Machine Learning for Accurate Efficiency Prediction in Non-Fullerene Ternary Organic Solar Cells: Leveraging Computable Molecular Descriptors in High-Throughput Virtual Screening
1. Method 8
1.1 Workflow 8
1.2 Database Construction 9
1.3 Extracting Computable HOMO and LUMO Descriptors from DFT calculations 10
1.4 ML Model Development and Model Performance Evaluation 11
2. Results and Discussion 11
2.1 Correlation Analysis 11
2.2 Performance of Predictive ML Models 12
2.3 High-Throughput Virtual Screening 16
3. Conclusions 30

Chapter 2-Advanced High-Throughput Rational Design of Porphyrin-Sensitized Solar Cells Using Interpretable Machine Learning
1. Method 32
1.1 Workflow 32
1.2 Database Construction and Data Division 34
1.3 Quantum Chemistry Calculations 35
1.4 Molecular Descriptor Sets (MDS) 36
1.5 Synthesis of GY-series Dye 40
1.6 Device Fabrication 42
2. Results and Discussion 42
2.1 Performance of Predictive Models in terms of MDSGS 42
2.2 Performance of Predictive Models in terms of MDSGS+ABS 44
2.3 Performance of Predictive Models in terms of MDSGS+ABS+ET 46
2.4 Insights into Role of Key Molecular Descriptors for Chemical Design Rules 48
2.5 Model Validation by Predicting Performance of Uncharted Novel Zn Porphyrin DSCs 55
2.6 In Silico Virtual Screening of Potential Zn-Porphyrins 61
3. Conclusions 66

Chapter 3-Overview of Algorithm Descriptions, Evaluation Metrics, and Model Interpretations
1. Machine learning algorithms 67
1.1 eXtreme Gradient Boosting (XGBoost) 67
1.2 Light Gradient Boosting Machine (LGBM) 68
1.3 Artificial Neural Network (ANN) 69
1.4 Convolutional Neural Network (CNN) 70
2. Model Explanation: SHAP value 73

Supporting Information 74
References 119
參考文獻 References
[1] O. Inganäs, Advanced Materials 2018, 30, 1800388.
[2] N. Y. Doumon, L. L. Yang, F. Rosei, Nano Energy 2022, 94, 106915.
[3] G. Zhang, F. R. Lin, F. Qi, T. Heumuller, A. Distler, H. J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K. Jen, H. L. Yip, Chem Rev 2022, 122, 14180.
[4] H. Tan, W. Fan, M. Zhu, J. Zhu, X. Wang, M. Xiao, R. Yang, W. Zhu, J. Yu, Small 2023, 19, e2304368.
[5] T. Chen, S. Li, Y. Li, Z. Chen, H. Wu, Y. Lin, Y. Gao, M. Wang, G. Ding, J. Min, Z. Ma, H. Zhu, L. Zuo, H. Chen, Adv Mater 2023, 35, e2300400.
[6] L. Lucera, F. Machui, P. Kubis, H. D. Schmidt, J. Adams, S. Strohm, T. Ahmad, K. Forberich, H. J. Egelhaaf, C. J. Brabec, Energy & Environmental Science 2016, 9, 89.
[7] C. Zhao, J. Wang, X. Zhao, Z. Du, R. Yang, J. Tang, Nanoscale 2021, 13, 2181.
[8] Z. Li, X. Wang, N. Zheng, A. Saparbaev, J. Zhang, C. Xiao, S. Lei, X. Zheng, M. Zhang, Y. Li, B. Xiao, R. Yang, Energy & Environmental Science 2022, 15, 4338.
[9] M. Deng, X. Xu, Y. Duan, L. Yu, R. Li, Q. Peng, Adv Mater 2023, 35, e2210760.
[10] H. Chen, S. Y. Jeong, J. Tian, Y. Zhang, D. R. Naphade, M. Alsufyani, W. Zhang, S. Griggs, H. Hu, S. Barlow, H. Y. Woo, S. R. Marder, T. D. Anthopoulos, I. McCulloch, Y. Lin, Energy & Environmental Science 2023, 16, 1062.
[11] K. Liu, Y. Jiang, F. Liu, G. Ran, F. Huang, W. Wang, W. Zhang, C. Zhang, J. Hou, X. Zhu, Adv Mater 2023, 35, e2300363.
[12] P. Bi, J. Wang, Y. Cui, J. Zhang, T. Zhang, Z. Chen, J. Qiao, J. Dai, S. Zhang, X. Hao, Z. Wei, J. Hou, Adv Mater 2023, 35, e2210865.
[13] M. Günther, N. Kazerouni, D. Blätte, J. D. Perea, B. C. Thompson, T. Ameri, Nature Reviews Materials 2023, 8, 456.
[14] P. Bi, X. Hao, Solar RRL 2018, 3.
[15] C. Zhang, P. Jiang, X. Zhou, S. Feng, Z. Bi, X. Xu, C. Li, Z. Tang, W. Ma, Z. Bo, ACS Appl Mater Interfaces 2020, 12, 40590.
[16] W. Zhang, J. Huang, J. Xu, M. Han, D. Su, N. Wu, C. Zhang, A. Xu, C. Zhan, Advanced Energy Materials 2020, 10.
[17] L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu, M. Shi, C.-Z. Li, H. Li, J. Hou, H. Chen, Energy & Environmental Science 2020, 13, 635.
[18] X. Ma, J. Wang, J. Gao, Z. Hu, C. Xu, X. Zhang, F. Zhang, Advanced Energy Materials 2020, 10.
[19] P. P. Khlyabich, M. Sezen-Edmonds, J. B. Howard, B. C. Thompson, Y.-L. Loo, ACS Energy Letters 2017, 2, 2149.
[20] Y. Zhang, G. Li, Accounts of Materials Research 2020, 1, 158.
[21] Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel, Nature 2023, 613, 60.
[22] S. Huang, Q. Li, S. Li, C. Li, H. Tan, Y. Xie, Chem Commun (Camb) 2024, 60, 4521.
[23] K. Zeng, Z. Tong, L. Ma, W.-H. Zhu, W. Wu, Y. Xie, Energy & Environmental Science 2020, 13, 1617.
[24] A. B. Munoz-Garcia, I. Benesperi, G. Boschloo, J. J. Concepcion, J. H. Delcamp, E. A. Gibson, G. J. Meyer, M. Pavone, H. Pettersson, A. Hagfeldt, M. Freitag, Chem. Soc. Rev. 2021, 50, 12450.
[25] S. Zhang, F. Huang, X. Guo, Y. Xiong, Y. Huang, H. Agren, L. Wang, J. Zhang, Angew Chem Int Ed Engl 2023, 62, e202302753.
[26] K. W. Zeng, Z. F. Tong, L. Ma, W. H. Zhu, W. J. Wu, Y. S. Xie, Energ Environ. Sci. 2020, 13, 1617.
[27] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
[28] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Gratzel, Nat Chem 2014, 6, 242.
[29] A. Yella, C. L. Mai, S. M. Zakeeruddin, S. N. Chang, C. H. Hsieh, C. Y. Yeh, M. Gratzel, Angew. Chem. Int. Ed. 2014, 53, 2973.
[30] C. C. Chen, Y. H. Chen, V. S. Nguyen, S. Y. Chen, M. C. Tsai, J. S. Chen, S. Y. Lin, T. C. Wei, C. Y. Yeh, Advanced Energy Materials 2023, 13, 2300353.
[31] Y. M. Liu, W. S. Yan, S. C. Han, H. Zhu, Y. T. Tu, L. Guan, X. Y. Tan, Sol Rrl 2022, 6, 2101100.
[32] J. Li, Y. Peng, L. Zhao, G. Chen, L. Zeng, G. Wei, Y. Xu, Materials Advances 2022, 3, 8639.
[33] S. Sala, E. Quadrivi, P. Biagini, R. Po’, Sol Rrl 2023, 2300490.
[34] X. Cai, F. Liu, A. Yu, J. Qin, M. Hatamvand, I. Ahmed, J. Luo, Y. Zhang, H. Zhang, Y. Zhan, Light Sci Appl 2022, 11, 234.
[35] Q. L. Tao, P. C. Xu, M. J. Li, W. C. Lu, Npj Computational Materials 2021, 7, 23.
[36] Y. Wen, L. Fu, G. Li, J. Ma, H. Ma, Sol Rrl 2020, 4, 2000110.
[37] W. Sun, Y. Zheng, K. Yang, Q. Zhang, A. A. Shah, Z. Wu, Y. Sun, L. Feng, D. Chen, Z. Xiao, S. Lu, Y. Li, K. Sun, Sci Adv 2019, 5, eaay4275.
[38] M. H. Lee, Sol Rrl 2023, 7, 2300533.
[39] Sol Rrl 2023, 7, 2300307.
[40] J. H. Li, C. R. Zhang, M. L. Zhang, X. M. Liu, J. J. Gong, Y. H. Chen, Z. J. Liu, Y. Z. Wu, H. S. Chen, Organic Electronics 2024, 125.
[41] H. Sahu, W. Rao, A. Troisi, H. Ma, Advanced Energy Materials 2018, 8.
[42] Accelrys, I. Materials Studio. Accelrys Sofware Inc (2010).
[43] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, Journal of the American Chemical Society 1992, 114, 10024.
[44] A. D. Becke, Phys Rev A Gen Phys 1988, 38, 3098.
[45] J. P. Perdew, Phys Rev B Condens Matter 1986, 33, 8822.
[46] F. Weigend, R. Ahlrichs, Phys Chem Chem Phys 2005, 7, 3297.
[47] T. M. Pappenfus, J. A. Schmidt, R. E. Koehn, J. D. Alia, Macromolecules 2011, 44, 2354.
[48] Y. Zhao, D. G. Truhlar, Acc Chem Res 2008, 41, 157.
[49] Y. Zhao, D. G. Truhlar, Theoretical Chemistry Accounts 2007, 120, 215.
[50] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. C.01. Wallingford, CT, 2016.
[51] S. M. Lundberg, B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, T. Adams, D. E. Liston, D. K.-W. Low, S.-F. Newman, J. Kim, S.-I. Lee, Nature Biomedical Engineering 2018, 2, 749.
[52] Lundberg, Scott, S.-I. Lee, Adv Neural Inf Process Syst 2017, 4765.
[53] T. Hao, S. Leng, Y. Yang, W. Zhong, M. Zhang, L. Zhu, J. Song, J. Xu, G. Zhou, Y. Zou, Y. Zhang, F. Liu, Patterns (N Y) 2021, 2, 100333.
[54] Q. Ye, Z. Chen, D. Yang, W. Song, J. Zhu, S. Yang, J. Ge, F. Chen, Z. Ge, Adv Mater 2023, 35, e2305562.
[55] Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi, J. Ge, Y. Guo, X. Tong, F. Chen, Z. Ge, Energy & Environmental Science 2023, 16, 3119.
[56] P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui, T. Zhang, J. Ren, J. Qin, L. Hong, X. Hao, J. Hou, Joule 2021, 5, 2408.
[57] T. Liu, Y. Guo, Y. Yi, L. Huo, X. Xue, X. Sun, H. Fu, W. Xiong, D. Meng, Z. Wang, F. Liu, T. P. Russell, Y. Sun, Adv Mater 2016, 28, 10008.
[58] L. Han, H. Jiang, D. Ouyang, W. Chen, T. Hu, J. Wang, S. Wen, M. Sun, R. Yang, Nano Energy 2017, 36, 110.
[59] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway, A. Aspuru-Guzik, Journal of Physical Chemistry Letters 2011, 2, 2241.
[60] J. Hachmann, R. Olivares-Amaya, A. Jinich, A. L. Appleton, M. A. Blood-Forsythe, L. R. Seress, C. Román-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha, R. Mondal, A. Sokolov, Z. A. Bao, A. Aspuru-Guzik, Energy & Environmental Science 2014, 7, 698.
[61] C. Liu, L. Shao, S. Chen, Z. Hu, H. Cai, F. Huang, Progress in Polymer Science 2023, 143.
[62] L. Ying, B. B. Hsu, H. Zhan, G. C. Welch, P. Zalar, L. A. Perez, E. J. Kramer, T. Q. Nguyen, A. J. Heeger, W. Y. Wong, G. C. Bazan, J Am Chem Soc 2011, 133, 18538.
[63] L. Ying, F. Huang, G. C. Bazan, Nat Commun 2017, 8, 14047.
[64] Z. Yang, Z. Liu, L. Chen, ACS Applied Polymer Materials 2023, 5, 7658.
[65] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chemical Reviews 2009, 109, 5868.
[66] H. Zhang, S. Jia, Z. Liu, Z. Chen, Molecules 2023, 28.
[67] L.-W. Feng, J. Chen, S. Mukherjee, V. K. Sangwan, W. Huang, Y. Chen, D. Zheng, J. W. Strzalka, G. Wang, M. C. Hersam, D. DeLongchamp, A. Facchetti, T. J. Marks, ACS Energy Letters 2020, 5, 1780.
[68] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[69] G. Petersson, M. A. J. T. J. o. c. p. Al‐Laham, 1991, 94, 6081.
[70] M. Cossi, N. Rega, G. Scalmani, V. J. J. o. c. c. Barone, 2003, 24, 669.
[71] N. M. O′boyle, A. L. Tenderholt, K. M. J. J. o. c. c. Langner, 2008, 29, 839.
[72] B. J. T. J. o. c. p. Delley, 1990, 92, 508.
[73] 2000, 113, 7756.
[74] J. P. Perdew, K. Burke, M. J. P. r. l. Ernzerhof, 1996, 77, 3865.
[75] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. J. P. r. B. Fiolhais, 1992, 46, 6671.
[76] M. Badertscher, K. Bischofberger, M. E. Munk, E. Pretsch, J. Chem. Inf. Comput. Sci. 2001, 41, 889.
[77] N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo, M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, S. Vegiraju, S. Yau, C. G. Wu, R. P. Chang, A. Facchetti, M. C. Chen, T. J. Marks, J. Am. Chem. Soc. 2015, 137, 4414.
[78] F. De Angelis, S. Fantacci, A. Selloni, M. Gratzel, M. K. Nazeeruddin, Nano Lett. 2007, 7, 3189.
[79] P. N. Samanta, D. Majumdar, S. Roszak, J. Leszczynski, J. Phys. Chem. C 2020, 124, 2817.
[80] K. Nithyanandam, R. Pitchumani, Solar Energy 2012, 86, 351.
[81] S. Ye, A. Kathiravan, H. Hayashi, Y. Tong, Y. Infahsaeng, P. Chabera, T. Pascher, A. P. Yartsev, S. Isoda, H. Imahori, V. Sundström, J. Phys. Chem. C 2013, 117, 6066.
[82] A. S. Hart, B. K. Chandra, H. B. Gobeze, L. R. Sequeira, F. D′Souza, ACS Appl Mater Interfaces 2013, 5, 5314.
[83] T. Higashino, H. Imahori, Dalton transactions 2015, 44, 448.
[84] L. Si, H. He, J. Phys. Chem. A 2014, 118, 3410.
[85] H. G. Tsai, J. C. Hu, C. J. Tan, Y. C. Sheng, C. C. Chiu, J. Phys. Chem. A 2016, 120, 8813.
[86] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
[87] A. Baumann, C. Curiac, J. H. Delcamp, ChemSusChem 2020, 13, 2503.
[88] M. L. Han, Y. Z. Zhu, S. Liu, Q. L. Liu, D. Ye, B. Wang, J. Y. Zheng, J. Power Sources 2018, 387, 117.
[89] C. Baldoli, S. Bertuolo, E. Licandro, L. Viglianti, P. Mussini, G. Marotta, P. Salvatori, F. De Angelis, P. Manca, N. Manfredi, A. Abbotto, Dyes Pigm. 2015, 121, 351.
[90] K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, H. Arakawa, J. Phys. Chem. B 2002, 106, 1363.
[91] A. Mishra, M. K. Fischer, P. Bauerle, Angew. Chem. Int. Ed. 2009, 48, 2474.
[92] C. C. Chen, J. S. Chen, V. S. Nguyen, T. C. Wei, C. Y. Yeh, Angew. Chem. Int. Ed. 2021, 60, 4886.
[93] H.-H. Chou, K. S. K. Reddy, H.-P. Wu, B.-C. Guo, H.-W. Lee, E. W.-G. Diau, C.-P. Hsu, C.-Y. Yeh, ACS Applied Materials & Interfaces 2016, 8, 3418.
[94] J. Luo, M. Xu, R. Li, K. W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi, P. Wang, J. Wu, J. Am. Chem. Soc. 2014, 136, 265.
[95] S. Mathew, N. A. Astani, B. F. E. Curchod, J. H. Delcamp, M. Marszalek, J. Frey, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Mater. Chem. A 2016, 4, 2332.
[96] L. Pellejà, C. V. Kumar, J. N. Clifford, E. Palomares, J. Phys. Chem. C 2014, 118, 16504.
[97] S.-L. Chen, L.-N. Yang, Z.-S. Li, J. Power Sources 2013, 223, 86.
[98] T. Chen, C. Guestrin, presented at Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.
[99] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Advances in neural information processing systems 2017, 30.
[100] A. Dongare, R. Kharde, A. D. J. I. J. o. E. Kachare, I. Technology, 2012, 2, 189.
[101] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, T. Chen, Pattern Recognition 2018, 77, 354.
[102] K. Jiang, G. Zhang, G. Yang, J. Zhang, Z. Li, T. Ma, H. Hu, W. Ma, H. Ade, H. Yan, Advanced Energy Materials 2017, 8.
[103] K. K. Weng, C. Li, P. Q. Bi, H. S. Ryu, Y. K. Guo, X. T. Hao, D. H. Zhao, W. W. Li, H. Y. Woo, Y. M. Sun, Journal of Materials Chemistry A 2019, 7, 3552.
[104] P. Xia, M. L. Wu, S. X. Zhang, J. Hu, L. Chen, T. L. Bu, J. P. Yi, D. Wu, J. L. Xia, Organic Electronics 2019, 73, 205.
[105] J. Wang, J. Peng, X. Liu, Z. Liang, ACS Appl Mater Interfaces 2017, 9, 20704.
[106] D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, J. A. Rohr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C. J. Emmott, J. Nelson, C. J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J. R. Durrant, I. McCulloch, Nat Mater 2017, 16, 363.
[107] P. Q. Bi, F. Zheng, X. Y. Yang, M. S. Niu, L. Feng, W. Qin, X. T. Hao, Journal of Materials Chemistry A 2017, 5, 12120.
[108] L. Zhong, L. Gao, H. J. Bin, Q. Hu, Z. G. Zhang, F. Liu, T. P. Russell, Z. J. Zhang, Y. F. Li, Advanced Energy Materials 2017, 7.
[109] Y. S. Chen, P. Ye, X. L. Jia, W. X. Gu, X. Z. Xu, X. X. Wu, J. F. Wu, F. Liu, Z. G. Zhu, H. Huang, Journal of Materials Chemistry A 2017, 5, 19697.
[110] D. Luo, M. Zhang, J. B. Li, Z. Xiao, F. Liu, L. M. Ding, X. H. Zhu, Journal of Materials Chemistry C 2020, 8, 6196.
[111] X. Y. Liu, J. L. Wang, J. J. Peng, Z. Q. Liang, Macromolecules 2017, 50, 6954.
[112] W. Y. Su, Q. P. Fan, X. Guo, X. Y. Meng, Z. Z. Bi, W. Ma, M. J. Zhang, Y. F. Li, Nano Energy 2017, 38, 510.
[113] Y. J. Hwang, H. Li, B. A. Courtright, S. Subramaniyan, S. A. Jenekhe, Adv Mater 2016, 28, 124.
[114] Y. Wu, H. Yang, Y. Zou, Y. Y. Dong, C. H. Cui, Y. F. Li, Solar Rrl 2018, 2.
[115] L. Krishnan Jagadamma, R. G. D. Taylor, Alexander L. Kanibolotsky, M. T. Sajjad, I. A. Wright, P. N. Horton, S. J. Coles, I. D. W. Samuel, P. J. Skabara, Sustainable Energy & Fuels 2019, 3, 2087.
[116] M. Xiao, K. Zhang, S. Dong, Q. Yin, Z. Liu, L. Liu, F. Huang, Y. Cao, ACS Appl Mater Interfaces 2018, 10, 25594.
[117] R. Yu, S. Zhang, H. Yao, B. Guo, S. Li, H. Zhang, M. Zhang, J. Hou, Adv Mater 2017, 29.
[118] L. G. Xiao, B. He, Q. Hu, L. Maserati, Y. Zhao, B. Yang, M. A. Kolaczkowski, C. L. Anderson, N. J. Borys, L. M. Klivansky, T. L. Chen, A. M. Schwartzberg, T. P. Russell, Y. Cao, X. B. Peng, Y. Liu, Joule 2018, 2, 2154.
[119] L. Xiao, H. Mao, Z. Li, C. Yan, J. Liu, Y. Liu, J. A. Reimer, Y. Min, Y. Liu, ACS Appl Mater Interfaces 2020, 12, 16387.
[120] X. Kong, H. Lin, X. Y. Du, L. J. Li, X. R. Li, X. W. Chen, C. J. Zheng, D. S. Wang, S. L. Tao, Journal of Materials Chemistry C 2018, 6, 9691.
[121] P. Cheng, M. Zhang, T. K. Lau, Y. Wu, B. Jia, J. Wang, C. Yan, M. Qin, X. Lu, X. Zhan, Adv Mater 2017, 29.
[122] H. Yao, Y. Cui, R. Yu, B. Gao, H. Zhang, J. Hou, Angew Chem Int Ed Engl 2017, 56, 3045.
[123] Y. Chen, Y. P. Qin, Y. Wu, C. Li, H. F. Yao, N. N. Liang, X. C. Wang, W. W. Li, W. Ma, J. H. Hou, Advanced Energy Materials 2017, 7.
[124] H. Jiang, X. Li, J. Wang, S. Qiao, Y. Zhang, N. Zheng, W. Chen, Y. Li, R. Yang, Advanced Functional Materials 2019, 29.
[125] Y. P. Xie, T. F. Li, J. Guo, P. Q. Bi, X. N. Xue, H. S. Ryu, Y. H. Cai, J. Min, L. J. Huo, X. T. Hao, H. Y. Woo, X. W. Zhan, Y. M. Sun, Acs Energy Letters 2019, 4, 1196.
[126] R. Z. Lv, D. Chen, X. F. Liao, L. Chen, Y. W. Chen, Advanced Functional Materials 2019, 29.
[127] B.-h. Yu, J. Wang, X.-l. Ma, S.-m. Zeng, S.-y. Hu, F.-j. Zhang, physica status solidi (RRL) – Rapid Research Letters 2019, 13.
[128] H. Yin, K. L. Chiu, P. Q. Bi, G. Li, C. Q. Yan, H. Tang, C. J. Zhang, Y. Q. Xiao, H. K. Zhang, W. Yu, H. L. Hu, X. H. Lu, X. T. Hao, S. K. So, Adv Electron Mater 2019, 5.
[129] X. Xu, Z. Bi, W. Ma, Z. Wang, W. C. H. Choy, W. Wu, G. Zhang, Y. Li, Q. Peng, Adv Mater 2017, 29.
[130] M. Zhang, Z. Xiao, W. Gao, Q. Liu, K. Jin, W. Wang, Y. Mi, Q. An, X. Ma, X. Liu, C. Yang, L. Ding, F. Zhang, Advanced Energy Materials 2018, 8.
[131] F. L. Pan, L. J. Zhang, H. Y. Jiang, D. Yuan, Y. W. Nian, Y. Cao, J. W. Chen, Journal of Materials Chemistry A 2019, 7, 9798.
[132] N. Yi, Q. Ai, W. Zhou, L. Huang, L. Zhang, Z. Xing, X. Li, J. Zeng, Y. Chen, Chemistry of Materials 2019, 31, 10211.
[133] P. Cheng, J. Wang, Q. Zhang, W. Huang, J. Zhu, R. Wang, S. Y. Chang, P. Sun, L. Meng, H. Zhao, H. W. Cheng, T. Huang, Y. Liu, C. Wang, C. Zhu, W. You, X. Zhan, Y. Yang, Adv Mater 2018, 30, e1801501.
[134] J. Wang, W. Gao, Q. An, M. Zhang, X. Ma, Z. Hu, J. Zhang, C. Yang, F. Zhang, Journal of Materials Chemistry A 2018, 6, 11751.
[135] M. Zhang, W. Gao, F. Zhang, Y. Mi, W. Wang, Q. An, J. Wang, X. Ma, J. Miao, Z. Hu, X. Liu, J. Zhang, C. Yang, Energy & Environmental Science 2018, 11, 841.
[136] Q. S. An, F. J. Zhang, W. Gao, Q. Q. Sun, M. Zhang, C. L. Yang, J. Zhang, Nano Energy 2018, 45, 177.
[137] Y. P. Qin, S. Q. Zhang, Y. Xu, L. Ye, Y. Wu, J. Y. Kong, B. W. Xu, H. F. Yao, H. Ade, J. H. Hou, Advanced Energy Materials 2019, 9.
[138] H. Yin, C. Zhang, H. Hu, S. Karuthedath, Y. Gao, H. Tang, C. Yan, L. Cui, P. W. K. Fong, Z. Zhang, Y. Gao, J. Yang, Z. Xiao, L. Ding, F. Laquai, S. K. So, G. Li, ACS Appl Mater Interfaces 2019, 11, 48095.
[139] X. L. Ma, Y. Mi, F. J. Zhang, Q. S. An, M. Zhang, Z. H. Hu, X. F. Liu, J. Zhang, W. H. Tang, Advanced Energy Materials 2018, 8.
[140] C. Xu, J. Wang, Q. An, L. Huo, F. Zhang, Organic Electronics 2019, 71, 272.
[141] W. Jiang, R. Yu, Z. Liu, R. Peng, D. Mi, L. Hong, Q. Wei, J. Hou, Y. Kuang, Z. Ge, Adv Mater 2018, 30.
[142] H. Zhang, X. Du, Y. Tang, X. Lu, L. Zhou, C. Zheng, H. Lin, S. Tao, Front Chem 2020, 8, 190.
[143] Q. An, J. Zhang, W. Gao, F. Qi, M. Zhang, X. Ma, C. Yang, L. Huo, F. Zhang, Small 2018, 14, e1802983.
[144] P. Y. Xue, Y. Q. Xiao, T. F. Li, S. X. Dai, B. Y. Jia, K. Liu, J. Y. Wang, X. H. Lu, R. P. S. Han, X. W. Zhan, Journal of Materials Chemistry A 2018, 6, 24210.
[145] M. A. Adil, J. Q. Zhang, Y. H. Wang, J. D. Yu, C. Yang, G. H. Lu, Z. X. Wei, Nano Energy 2020, 68.
[146] J. Lv, Y. Feng, J. H. Fu, J. Gao, R. Singh, M. Kumar, M. Kim, H. Tang, S. R. Lu, W. M. Zhang, I. McCulloch, J. F. Li, Z. P. Kan, Solar Rrl 2020, 4.
[147] H. Hu, L. Ye, M. Ghasemi, N. Balar, J. J. Rech, S. J. Stuard, W. You, B. T. O′Connor, H. Ade, Adv Mater 2019, 31, e1808279.
[148] B. Kan, Y. Q. Q. Yi, X. Wan, H. Feng, X. Ke, Y. Wang, C. Li, Y. Chen, Advanced Energy Materials 2018, 8.
[149] N. N. Zheng, K. Mahmood, W. K. Zhong, F. Liu, P. Zhu, Z. F. Wang, B. M. Xie, Z. M. Chen, K. Zhang, L. Ying, F. Huang, Y. Cao, Nano Energy 2019, 58, 724.
[150] Q. An, J. Wang, F. Zhang, Nano Energy 2019, 60, 768.
[151] S. X. Dai, S. Chandrabose, J. M. Xin, T. F. Li, K. Chen, P. Y. Xue, K. Liu, K. Zhou, W. Ma, J. M. Hodgkiss, X. W. Zhan, Journal of Materials Chemistry A 2019, 7, 2268.
[152] T. Liu, Z. Luo, Y. Chen, T. Yang, Y. Xiao, G. Zhang, R. Ma, X. Lu, C. Zhan, M. Zhang, C. Yang, Y. Li, J. Yao, H. Yan, Energy & Environmental Science 2019, 12, 2529.
[153] J. Gao, R. Ming, Q. An, X. Ma, M. Zhang, J. Miao, J. Wang, C. Yang, F. Zhang, Nano Energy 2019, 63.
[154] X. Du, Y. Yuan, L. Zhou, H. Lin, C. Zheng, J. Luo, Z. Chen, S. Tao, L. S. Liao, Advanced Functional Materials 2020, 30.
[155] B. Wang, Y. Y. Fu, Q. Q. Yang, J. Wu, H. Liu, H. Tang, Z. Y. Xie, Journal of Materials Chemistry C 2019, 7, 10498.
[156] H. H. Gao, Y. Sun, X. Wan, X. Ke, H. Feng, B. Kan, Y. Wang, Y. Zhang, C. Li, Y. Chen, Adv Sci (Weinh) 2018, 5, 1800307.
[157] Y. Chang, T.-K. Lau, M.-A. Pan, X. Lu, H. Yan, C. Zhan, Materials Horizons 2019, 6, 2094.
[158] B. Du, R. Geng, W. Li, D. Li, Y. Mao, M. Chen, X. Zhang, J. A. Smith, R. C. Kilbride, M. E. O’Kane, D. Liu, D. G. Lidzey, W. Tang, T. Wang, ACS Energy Letters 2019, 4, 2378.
[159] H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, J. Hou, Adv Mater 2018, 30, e1800613.
[160] K. Li, Y. Wu, Y. Tang, M. A. Pan, W. Ma, H. Fu, C. Zhan, J. Yao, Advanced Energy Materials 2019, 9.
[161] A. Zeng, M. Pan, B. Lin, T.-K. Lau, M. Qin, K. Li, W. Ma, X. Lu, C. Zhan, H. Yan, Solar RRL 2019, 4.
[162] C. Yan, T. Liu, Y. Chen, R. Ma, H. Tang, G. Li, T. Li, Y. Xiao, T. Yang, X. Lu, X. Zhan, H. Yan, G. Li, B. Tang, Solar RRL 2019, 4, 1900377.
[163] Y. Cai, L. Meng, H. Gao, Z. Guo, N. Zheng, Z. Xie, H. Zhang, C. Li, X. Wan, Y. Chen, Journal of Materials Chemistry A 2020, 8, 5194.
[164] M.-A. Pan, T.-K. Lau, Y. Tang, Y.-C. Wu, T. Liu, K. Li, M.-C. Chen, X. Lu, W. Ma, C. Zhan, Journal of Materials Chemistry A 2019, 7, 20713.
[165] Z. Hu, L. Yang, W. Gao, J. Gao, C. Xu, X. Zhang, Z. Wang, W. Tang, C. Yang, F. Zhang, Small 2020, 16, e2000441.
[166] D. Su, M.-A. Pan, Z. Liu, T.-K. Lau, X. Li, F. Shen, S. Huo, X. Lu, A. Xu, H. Yan, C. Zhan, Chemistry of Materials 2019, 31, 8908.
[167] R. J. Ma, Y. Z. Chen, T. Liu, Y. Q. Xiao, Z. H. Luo, M. J. Zhang, S. W. Luo, X. H. Lu, G. Y. Zhang, Y. F. Li, H. Yan, K. Chen, Journal of Materials Chemistry C 2020, 8, 909.
[168] Q. An, X. Ma, J. Gao, F. Zhang, Sci Bull (Beijing) 2019, 64, 504.
[169] J. Song, C. Li, L. Zhu, J. Guo, J. Xu, X. Zhang, K. Weng, K. Zhang, J. Min, X. Hao, Y. Zhang, F. Liu, Y. Sun, Adv Mater 2019, 31, e1905645.
[170] D. Li, X. Chen, J. Cai, W. Li, M. Chen, Y. Mao, B. Du, J. A. Smith, R. C. Kilbride, M. E. O’Kane, X. Zhang, Y. Zhuang, P. Wang, H. Wang, D. Liu, R. A. L. Jones, D. G. Lidzey, T. Wang, Science China Chemistry 2020, 63, 1461.
[171] Y. Chang, T.-K. Lau, P. C. Y. Chow, N. Wu, D. Su, W. Zhang, H. Meng, C. Ma, T. Liu, K. Li, X. Zou, K. S. Wong, X. Lu, H. Yan, C. Zhan, Journal of Materials Chemistry A 2020, 8, 3676.
[172] G. Xie, Z. Zhang, Z. Su, X. Zhang, J. Zhang, Nano Energy 2020, 69.
[173] T. Yan, J. Ge, T. Lei, W. Zhang, W. Song, B. Fanady, D. Zhang, S. Chen, R. Peng, Z. Ge, Journal of Materials Chemistry A 2019, 7, 25894.
[174] X. Chen, B. Kan, Y. Kan, M. Zhang, S. B. Jo, K. Gao, F. Lin, F. Liu, X. Peng, Y. Cao, A. K. Y. Jen, Advanced Functional Materials 2020, 30.
[175] T. Huang, Z. Zhang, D. Wang, Y. Zhang, Z. Deng, Y. Huang, Q. Liao, J. Zhang, ACS Applied Energy Materials 2023, 6, 3126.
[176] C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nature Energy 2021, 6, 605.
[177] M. L. Keshtov, A. R. Khokhlov, D. Y. Shikin, V. Alekseev, G. Chayal, H. Dahiya, M. K. Singh, F. C. Chen, G. D. Sharma, ACS Omega 2023, 8, 1989.
[178] R. Wang, D. Y. Zhang, X. H. Zhang, J. S. Yu, Dyes and Pigments 2022, 199.
[179] N. Su, J. Chen, M. Peng, G. Li, R. M. Pankow, D. Zheng, J. Ding, A. Facchetti, T. J. Marks, Journal of Energy Chemistry 2023, 79, 321.
[180] Y. Wang, T. Huang, D. Wang, H. Guan, S. Geng, Z. Cao, Z. Ding, J. Li, J. Zhang, Optical Materials 2023, 135.
[181] Y. C. Chen, Z. H. Wu, D. Yuan, F. L. Pan, R. H. Qiu, Z. S. Zhang, L. J. Zhang, J. W. Chen, Organic Electronics 2022, 107.
[182] R. Zhu, X. Li, L. Cao, X. Du, H. Lin, G. Yang, C. Zheng, Z. Chen, S. Tao, Organic Electronics 2022, 111.
[183] D. Luo, Z. Y. Jiang, W. L. Yang, X. G. Guo, X. H. Li, E. J. Zhou, G. Q. Li, L. Q. Li, C. H. Duan, C. W. Shan, Z. J. Wang, Y. H. Li, B. M. Xu, A. K. K. Kyaw, Nano Energy 2022, 98.
[184] S. J. Jeon, Y. H. Kim, I. N. Kim, N. G. Yang, J. H. Yun, D. K. Moon, Journal of Energy Chemistry 2022, 65, 194.
[185] J. Man, Z. Liu, Materials Today Chemistry 2022, 26.
[186] Z. K. Lin, J. F. Wu, F. Tang, X. B. Peng, Acs Applied Energy Materials 2023, 6, 3844.
[187] R. Agneeswari, Y. Ahn, V. Tamilavan, I. Shin, C. G. Shin, S. H. Park, Y. E. Jin, Journal of Polymer Science 2023, 61, 571.
[188] C. Lee, J. H. Lee, H. H. Lee, M. Nam, D. H. Ko, Advanced Energy Materials 2022, 12.
[189] X. Wang, X. Zhai, X. Kang, X. Ding, C. Gao, X. Jing, L. Yu, M. Sun, Solar RRL 2022, 6.
[190] H. Tan, B. Yuan, Z. Shao, W. Deng, J. Yu, M. Xiao, H. Wu, W. Zhu, Chemical Engineering Journal 2022, 445.
[191] L. Z. Liu, P. J. Chao, D. Z. Mo, F. He, Journal of Energy Chemistry 2021, 54, 620.
[192] X. Ke, L. Meng, X. Wan, Y. Cai, H.-H. Gao, Y.-Q.-Q. Yi, Z. Guo, H. Zhang, C. Li, Y. Chen, Nano Energy 2020, 75.
[193] D. Wang, R. Qin, G. Zhou, X. Li, R. Xia, Y. Li, L. Zhan, H. Zhu, X. Lu, H. L. Yip, H. Chen, C. Z. Li, Adv Mater 2020, 32, e2001621.
[194] S. L. Chang, F. Y. Cao, K. S. Huang, W. L. Lee, M. H. Lee, C. S. Hsu, Y. J. Cheng, Journal of Materials Chemistry A 2020, 8, 12141.
[195] K. S. Ram, J. Singh, Advanced Theory and Simulations 2020, 3.
[196] X. F. Liao, Y. J. Cui, X. L. Shi, Z. Y. Yao, H. Zhao, Y. K. An, P. P. Zhu, Y. X. Guo, X. Fei, L. J. Zuo, K. Gao, R. C. Ling, Q. Xie, L. Chen, W. Ma, Y. W. Chen, A. K. Y. Jen, Materials Chemistry Frontiers 2020, 4, 1507.
[197] J. Wan, L. F. Zhang, Q. N. He, S. Q. Liu, B. Huang, L. Hu, W. H. Zhou, Y. W. Chen, Advanced Functional Materials 2020, 30.
[198] M. Ren, G. Zhang, Z. Chen, J. Xiao, X. Jiao, Y. Zou, H. L. Yip, Y. Cao, ACS Appl Mater Interfaces 2020, 12, 13077.
[199] J. Gao, W. Gao, X. Ma, Z. Hu, C. Xu, X. Wang, Q. An, C. Yang, X. Zhang, F. Zhang, Energy & Environmental Science 2020, 13, 958.
[200] Z. H. Luo, R. Sun, C. Zhong, T. Liu, G. Y. Zhang, Y. Zou, X. C. Jiao, J. Min, C. L. Yang, Science China-Chemistry 2020, 63, 361.
[201] C. Yang, Y. Sun, Q. Li, K. Liu, X. Xue, Y. Huang, K. Ren, L. Li, Y. Chen, Z. Wang, S. Qu, Z. Wang, J Phys Chem Lett 2020, 11, 927.
[202] C. E. Song, H. Ham, J. Noh, S. K. Lee, I. N. Kang, Polymer 2020, 188.
[203] S. M. Lee, T. Kumari, B. Lee, Y. Cho, J. Lee, J. Oh, M. Jeong, S. Jung, C. Yang, Small 2020, 16, e1905309.
[204] J. Y. Zhang, W. R. Liu, G. Q. Zhou, Y. P. Yi, S. J. Xu, F. Liu, H. M. Zhu, X. Z. Zhu, Advanced Energy Materials 2020, 10.
[205] L. P. Duan, Y. Zhang, H. M. Yi, F. Haque, R. Deng, H. L. Guan, Y. P. Zou, A. Uddin, Energy Technology 2020, 8.
[206] L. Xie, C. Yang, R. M. Zhou, Z. Wang, J. Q. Zhang, K. Lu, Z. X. Wei, Chinese Journal of Chemistry 2020, 38, 935.
[207] Y. Ma, X. Zhou, D. Cai, Q. Tu, W. Ma, Q. Zheng, Materials Horizons 2020, 7, 117.
[208] L. L. Zhan, S. X. Li, S. H. Zhang, T. K. Lau, T. R. Andersen, X. H. Lu, M. M. Shi, C. Z. Li, G. Li, H. Z. Chen, Solar Rrl 2019, 3.
[209] Z. Y. Liu, N. Wang, Advanced Optical Materials 2019, 7.
[210] Y. Chang, X. Zhang, Y. Tang, M. Gupta, D. Su, J. Liang, D. Yan, K. Li, X. Guo, W. Ma, H. Yan, C. Zhan, Nano Energy 2019, 64.
[211] J. Zhang, W. Liu, M. Zhang, Y. Liu, G. Zhou, S. Xu, F. Zhang, H. Zhu, F. Liu, X. Zhu, iScience 2019, 19, 883.
[212] L. He, C. Wan, H. Y. Dong, X. H. Zhang, J. Huang, Ieee Journal of Photovoltaics 2019, 9, 1290.
[213] L. Wu, L. Xie, H. Tian, R. Peng, J. Huang, B. Fanady, W. Song, S. Tan, W. Bi, Z. Ge, Sci Bull (Beijing) 2019, 64, 1087.
[214] H. W. Cheng, H. Zhang, Y. C. Lin, N. Z. She, R. Wang, C. H. Chen, J. Yuan, C. S. Tsao, A. Yabushita, Y. Zou, F. Gao, P. Cheng, K. H. Wei, Y. Yang, Nano Lett 2019, 19, 5053.
[215] P. Q. Bi, C. R. Hall, H. Yin, S. K. So, T. A. Smith, K. P. Ghiggino, X. T. Hao, Journal of Physical Chemistry C 2019, 123, 18294.
[216] X. W. Guo, D. Q. Li, Y. X. Zhang, M. Jan, J. Q. Xu, Z. Q. Wang, B. Li, S. B. Xiong, Y. Q. Li, F. Liu, J. X. Tang, C. G. Duan, M. Fahlman, Q. Y. Bao, Organic Electronics 2019, 71, 65.
[217] V. Tamilavan, Y. L. Liu, J. Lee, I. Shin, Y. K. Jung, B. R. Lee, J. H. Jeong, S. H. Park, Acs Applied Energy Materials 2019, 2, 4284.
[218] F. Tang, K. L. Wu, Z. J. Zhou, G. Wang, B. Zhao, S. T. Tan, Acs Applied Energy Materials 2019, 2, 3918.
[219] X. Li, X. Du, H. Lin, X. Kong, L. Li, L. Zhou, C. Zheng, S. Tao, ACS Appl Mater Interfaces 2019, 11, 15598.
[220] X. Song, N. Gasparini, M. M. Nahid, S. H. K. Paleti, J. L. Wang, H. Ade, D. Baran, Joule 2019, 3, 846.
[221] K. Zhang, Z. Y. Liu, N. Wang, Journal of Power Sources 2019, 413, 391.
[222] R. Qin, D. Guo, M. Li, G. Li, Z. Bo, J. Wu, ACS Applied Energy Materials 2018, 2, 305.
[223] H. X. Jiang, X. M. Li, Z. Z. Liang, G. Y. Huang, W. C. Chen, N. Zheng, R. Q. Yang, Journal of Materials Chemistry A 2019, 7, 7760.
[224] X. Y. Du, J. W. Zhao, H. Zhang, X. Lu, L. Zhou, Z. H. Chen, H. Lin, C. J. Zheng, S. L. Tao, Journal of Materials Chemistry A 2019, 7, 20139.
[225] Z. Y. Liu, N. Wang, Journal of Materials Chemistry C 2019, 7, 10039.
[226] H. Huang, X. J. Li, S. S. Chen, B. B. Qiu, J. Q. Du, L. Meng, Z. J. Zhang, C. Yang, Y. F. Li, Journal of Materials Chemistry A 2019, 7, 27423.
[227] X. P. Xu, Z. Z. Bi, W. Ma, G. J. Zhang, H. Yan, Y. Li, Q. Peng, Journal of Materials Chemistry A 2019, 7, 14199.
[228] S. Oh, C. E. Song, T. Lee, A. Cho, H. K. Lee, J. C. Lee, S. J. Moon, E. Lim, S. K. Lee, W. S. Shin, Journal of Materials Chemistry A 2019, 7, 22044.
[229] P. Y. Xue, J. X. Zhang, J. M. Xin, E. O. Rech, T. F. Li, K. X. Meng, J. Y. Wang, W. Ma, W. You, S. R. Marder, R. P. S. Han, X. W. Zhan, Acta Physico-Chimica Sinica 2019, 35, 275.
[230] Y. Gong, K. Chang, C. Chen, M. Han, X. Zhan, J. Min, X. Jiao, Q. Li, Z. Li, Materials Chemistry Frontiers 2019, 3, 93.
[231] Y. Li, J. D. Lin, X. Liu, Y. Qu, F. P. Wu, F. Liu, Z. Q. Jiang, S. R. Forrest, Adv Mater 2018, 30, e1804416.
[232] T. Liu, Z. H. Luo, Q. P. Fan, G. Y. Zhang, L. Zhang, W. Gao, X. Guo, W. Ma, M. J. Zhang, C. L. Yang, Y. F. Li, H. Yan, Energy & Environmental Science 2018, 11, 3275.
[233] D. S. Tang, J. H. Wan, X. P. Xu, Y. W. Lee, H. Y. Woo, K. Feng, Q. Peng, Nano Energy 2018, 53, 258.
[234] L. Zhan, S. Li, H. Zhang, F. Gao, T. K. Lau, X. Lu, D. Sun, P. Wang, M. Shi, C. Z. Li, H. Chen, Adv Sci (Weinh) 2018, 5, 1800755.
[235] B. W. Gao, H. F. Yao, J. X. Hou, R. N. Yu, L. Hong, Y. Xu, J. H. Hou, Journal of Materials Chemistry A 2018, 6, 23644.
[236] T. Zhang, C. An, P. Bi, Q. Lv, J. Qin, L. Hong, Y. Cui, S. Zhang, J. Hou, Advanced Energy Materials 2021, 11.
[237] L. Zhan, S. Li, X. Xia, Y. Li, X. Lu, L. Zuo, M. Shi, H. Chen, Adv Mater 2021, 33, e2007231.
[238] F. Liu, L. Zhou, W. Liu, Z. Zhou, Q. Yue, W. Zheng, R. Sun, W. Liu, S. Xu, H. Fan, L. Feng, Y. Yi, W. Zhang, X. Zhu, Adv Mater 2021, 33, e2100830.
[239] X. Ma, A. Zeng, J. Gao, Z. Hu, C. Xu, J. H. Son, S. Y. Jeong, C. Zhang, M. Li, K. Wang, H. Yan, Z. Ma, Y. Wang, H. Y. Woo, F. Zhang, Natl Sci Rev 2021, 8, nwaa305.
[240] Q. Liu, Y. Wang, J. Fang, H. Liu, L. Zhu, X. Guo, M. Gao, Z. Tang, L. Ye, F. Liu, M. Zhang, Y. Li, Nano Energy 2021, 85.
[241] X. Wang, Q. Sun, J. Gao, X. Ma, J. H. Son, S. Y. Jeong, Z. Hu, L. Niu, H. Y. Woo, J. Zhang, F. Zhang, Solar RRL 2021, 5.
[242] Q. Ma, Z. Jia, L. Meng, J. Zhang, H. Zhang, W. Huang, J. Yuan, F. Gao, Y. Wan, Z. Zhang, Y. Li, Nano Energy 2020, 78.
[243] R. J. Ma, T. Liu, Z. H. Luo, K. Gao, K. Chen, G. Y. Zhang, W. Gao, Y. Q. Xiao, T. K. Lau, Q. P. Fan, Y. Z. Chen, L. K. Ma, H. L. Sun, G. L. Cai, T. Yang, X. H. Lu, E. G. Wang, C. L. Yang, A. K. Y. Jen, H. Yan, Acs Energy Letters 2020, 5, 2711.
[244] Q. An, J. Wang, W. Gao, X. Ma, Z. Hu, J. Gao, C. Xu, M. Hao, X. Zhang, C. Yang, F. Zhang, Sci Bull (Beijing) 2020, 65, 538.
[245] L. Zhan, S. Li, Y. Li, R. Sun, J. Min, Z. Bi, W. Ma, Z. Chen, G. Zhou, H. Zhu, M. Shi, L. Zuo, H. Chen, Joule 2022, 6, 662.
[246] L. Zhan, S. Li, Y. Li, R. Sun, J. Min, Y. Chen, J. Fang, C. Q. Ma, G. Zhou, H. Zhu, L. Zuo, H. Qiu, S. Yin, H. Chen, Advanced Energy Materials 2022, 12.
[247] Q. Fan, R. Ma, J. Yang, J. Gao, H. Bai, W. Su, Z. Liang, Y. Wu, L. Tang, Y. Li, Q. Wu, K. Wang, L. Yan, R. Zhang, F. Gao, G. Li, W. Ma, Angew Chem Int Ed Engl 2023, 62, e202308307.
[248] C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energy & Environmental Science 2022, 15, 2537.
[249] Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv Mater 2021, 33, e2102420.
[250] N. Duvva, S. Prasanthkumar, L. J. S. E. Giribabu, 2019, 184, 620.
[251] S. Li, Y. Zhang, S. Mei, X. Kong, M. Yang, Z. Hu, W. Wu, J. He, H. J. A. A. E. M. Tan, 2021, 4, 9267.
[252] C.-Y. Lin, C.-F. Lo, L. Luo, H.-P. Lu, C.-S. Hung, E. W.-G. Diau, The Journal of Physical Chemistry C 2009, 113, 755.
[253] C.-H. Wu, T.-Y. Pan, S.-H. Hong, C.-L. Wang, H.-H. Kuo, Y.-Y. Chu, E. W.-G. Diau, C.-Y. Lin, Chemical Communications 2012, 48, 4329.
[254] H.-P. Lu, C.-L. Mai, C.-Y. Tsia, S.-J. Hsu, C.-P. Hsieh, C.-L. Chiu, C.-Y. Yeh, E. W.-G. Diau, Physical Chemistry Chemical Physics 2009, 11, 10270.
[255] L. Cabau, C. V. Kumar, A. Moncho, J. N. Clifford, N. López, E. Palomares, Energy & Environmental Science 2015, 8, 1368.
[256] C.-H. Wu, M.-C. Chen, P.-C. Su, H.-H. Kuo, C.-L. Wang, C.-Y. Lu, C.-H. Tsai, C.-C. Wu, C.-Y. Lin, Journal of Materials Chemistry A 2014, 2, 991.
[257] J. Lu, X. Xu, K. Cao, J. Cui, Y. Zhang, Y. Shen, X. Shi, L. Liao, Y. Cheng, M. Wang, Journal of Materials Chemistry A 2013, 1, 10008.
[258] J. Lu, H. Li, S. Liu, Y.-C. Chang, H.-P. Wu, Y. Cheng, E. W.-G. Diau, M. Wang, Physical Chemistry Chemical Physics 2016, 18, 6885.
[259] Y. C. Chang, C. L. Wang, T. Y. Pan, S. H. Hong, C. M. Lan, H. H. Kuo, C. F. Lo, H. Y. Hsu, C. Y. Lin, E. W. Diau, Chem. Commun. 2011, 47, 8910.
[260] M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Chemical communications 2007, 2069.
[261] S. Hayashi, Y. Matsubara, S. Eu, H. Hayashi, T. Umeyama, Y. Matano, H. Imahori, Chemistry letters 2008, 37, 846.
[262] S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama, Y. Matano, Y. Araki, H. Imahori, The Journal of Physical Chemistry C 2008, 112, 15576.
[263] M. Cariello, S. M. Abdalhadi, P. Yadav, J.-D. Decoppet, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, G. J. D. T. Cooke, 2018, 47, 6549.
[264] S. Eu, S. Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano, H. Imahori, J. Phys. Chem. C 2007, 111, 3528.
[265] C.-P. Hsieh, H.-P. Lu, C.-L. Chiu, C.-W. Lee, S.-H. Chuang, C.-L. Mai, W.-N. Yen, S.-J. Hsu, E. W.-G. Diau, C.-Y. Yeh, Journal of Materials Chemistry 2010, 20, 1127.
[266] H. Song, X. Li, H. Ågren, Y. Xie, Dyes and Pigments 2017, 137, 421.
[267] M. J. Lee, K. D. Seo, H. M. Song, M. S. Kang, Y. K. Eom, H. S. Kang, H. K. Kim, Tetrahedron Letters 2011, 52, 3879.
[268] Y. Tang, Y. Wang, X. Li, H. Ågren, W.-H. Zhu, Y. Xie, ACS Applied Materials & Interfaces 2015, 7, 27976.
[269] H.-L. Jia, M.-D. Zhang, Z.-M. Ju, H.-G. Zheng, X.-H. Ju, Journal of Materials Chemistry A 2015, 3, 14809.
[270] H.-L. Jia, M.-D. Zhang, W. Yan, X.-H. Ju, H.-G. Zheng, Journal of Materials Chemistry A 2016, 4, 11782.
[271] Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.-H. Zhu, Journal of the American Chemical Society 2015, 137, 14055.
[272] Y. Lu, H. Song, X. Li, H. Ågren, Q. Liu, J. Zhang, X. Zhang, Y. Xie, ACS applied materials & interfaces 2019, 11, 5046.
[273] Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao, S. Tan, Chemical communications 2009, 2499.
[274] Y. Wang, L. Xu, X. Wei, X. Li, H. Ågren, W. Wu, Y. Xie, New Journal of Chemistry 2014, 38, 3227.
[275] N. Duvva, S. Gangada, R. Chitta, L. Giribabu, 2020, 24, 1189.
[276] P. S. Gangadhar, S. Gonuguntla, S. Madanaboina, N. Islavath, U. Pal, L. J. J. o. P. Giribabu, P. A. Chemistry, 2020, 392, 112408.
[277] G. Yang, Y. Tang, X. Li, H. Ågren, Y. Xie, ACS applied materials & interfaces 2017, 9, 36875.
[278] H. L. Song, W. Q. Tang, S. L. Zhao, Q. Y. Liu, Y. S. Xie, Dyes Pigm. 2018, 155, 323.
[279] T. Wei, X. Sun, X. Li, H. Ågren, Y. Xie, ACS Applied Materials & Interfaces 2015, 7, 21956.
[280] T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito, H. Imahori, Angewandte Chemie 2015, 127, 9180.
[281] Y. Wang, B. Chen, W. Wu, X. Li, W. Zhu, H. Tian, Y. Xie, Angewandte Chemie 2014, 126, 10955.
[282] S. Chang, H. Wang, Y. Hua, Q. Li, X. Xiao, W.-K. Wong, W. Y. Wong, X. Zhu, T. Chen, Journal of Materials Chemistry A 2013, 1, 11553.
[283] M. J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G. G. Wallace, D. L. Officer, A. Furube, R. Katoh, S. Mori, A. J. Mozer, Chemical Communications 2012, 48, 4145.
[284] H. He, A. Gurung, L. Si, A. G. Sykes, Chemical Communications 2012, 48, 7619.
[285] D. Koteshwar, S. Prasanthkumar, S. P. Singh, T. H. Chowdhury, I. Bedja, A. Islam, L. J. M. C. F. Giribabu, 2022, 6, 580.
[286] W. Zhou, B. Zhao, P. Shen, S. Jiang, H. Huang, L. Deng, S. Tan, Dyes and Pigments 2011, 91, 404.
[287] C. Y. Lee, C. She, N. C. Jeong, J. T. Hupp, Chemical communications 2010, 46, 6090.
[288] M. S. Kang, S. H. Kang, S. G. Kim, I. T. Choi, J. H. Ryu, M. J. Ju, D. Cho, J. Y. Lee, H. K. Kim, Chemical Communications 2012, 48, 9349.
[289] S. H. Kang, I. T. Choi, M. S. Kang, Y. K. Eom, M. J. Ju, J. Y. Hong, H. S. Kang, H. K. Kim, Journal of Materials Chemistry A 2013, 1, 3977.
[290] M. S. Kang, I. T. Choi, Y. W. Kim, B. S. You, S. H. Kang, J. Y. Hong, M. J. Ju, H. K. Kim, Journal of Materials Chemistry A 2013, 1, 9848.
[291] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Science 2011, 334, 629.
[292] T. Ripolles-Sanchis, B. C. Guo, H. P. Wu, T. Y. Pan, H. W. Lee, S. R. Raga, F. Fabregat-Santiago, J. Bisquert, C. Y. Yeh, E. W. Diau, Chem. Commun. 2012, 48, 4368.
[293] N. Masi Reddy, T.-Y. Pan, Y. Christu Rajan, B.-C. Guo, C.-M. Lan, E. Wei-Guang Diau, C.-Y. Yeh, Physical Chemistry Chemical Physics 2013, 15, 8409.
[294] A. Yella, C. L. Mai, S. M. Zakeeruddin, S. N. Chang, C. H. Hsieh, C. Y. Yeh, M. Grätzel, Angewandte Chemie 2014, 126, 3017.
[295] S.-L. Wu, H.-P. Lu, H.-T. Yu, S.-H. Chuang, C.-L. Chiu, C.-W. Lee, E. W.-G. Diau, C.-Y. Yeh, Energy & Environmental Science 2010, 3, 949.
[296] T.-F. Lu, W. Li, F.-Q. Bai, R. Jia, J. Chen, H.-X. J. J. o. M. C. A. Zhang, 2017, 5, 15567.
[297] N. Fuke, L. B. Hoch, A. Y. Koposov, V. W. Manner, D. J. Werder, A. Fukui, N. Koide, H. Katayama, M. J. A. N. Sykora, 2010, 4, 6377.
[298] C.-C. Chiu, Y.-C. Sheng, W.-J. Lin, R. Juwita, C.-J. Tan, H.-H. G. J. A. o. Tsai, 2018, 3, 433.
[299] N. M. O′Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 2008, 29, 839.
[300] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. J. T. J. o. P. C. B. Tachiya, 2004, 108, 4818.
[301] K. Chaitanya, X.-H. Ju, B. M. J. R. A. Heron, 2014, 4, 26621.
[302] J.-L. J. M. H. Bredas, 2014, 1, 17.
[303] R. A. J. T. J. o. c. p. Marcus, 1956, 24, 966.
[304] R. A. Marcus, The Journal of Chemical Physics 2004, 43, 679.
[305] O. Lopez-Estrada, H. G. Laguna, C. Barrueta-Flores, C. J. A. o. Amador-Bedolla, 2018, 3, 2130.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明