參考文獻 |
1. Richard E. Moore, C. C., and Gregory M. L. Patterson, Hapalindoles: New Alkaloids from the Blue-Green Alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 1984, 106, 6456-6457.
2. Bhat, V.; Dave, A.; MacKay, J. A.; Rawal, V. H., The Chemistry of Hapalindoles, Fischerindoles, Ambiguines, and Welwitindolinones. Alkaloids Chem Biol 2014, 73, 65-160.
3. Cagide, E.; Becher, P. G.; Louzao, M. C.; Espina, B.; Vieytes, M. R.; Juttner, F.; Botana, L. M., Hapalindoles from the cyanobacterium fischerella: potential sodium channel modulators. Chem Res Toxicol 2014, 27 (10), 1696-706.
4. Knoot, C. J.; Khatri, Y.; Hohlman, R. M.; Sherman, D. H.; Pakrasi, H. B., Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 2019, 8 (8), 1941-1951.
5. Khatri, Y.; Hohlman, R. M.; Mendoza, J.; Li, S.; Lowell, A. N.; Asahara, H.; Sherman, D. H., Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synth Biol 2020, 9 (6), 1349-1360.
6. Hohlman, R. M.; Newmister, S. A.; Sanders, J. N.; Khatri, Y.; Li, S.; Keramati, N. R.; Lowell, A. N.; Houk, K. N.; Sherman, D. H., Structural Diversification of Hapalindole and Fischerindole Natural Products via Cascade Biocatalysis. ACS Catalysis 2021, 11 (8), 4670-4681.
7. Li, S.; Lowell, A. N.; Yu, F.; Raveh, A.; Newmister, S. A.; Bair, N.; Schaub, J. M.; Williams, R. M.; Sherman, D. H., Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C-C Bond-Forming Cascade. J Am Chem Soc 2015, 137 (49), 15366-9.
8. Liu, X.; Hillwig, M. L.; Koharudin, L. M.; Gronenborn, A. M., Unified biogenesis of ambiguine, fischerindole, hapalindole and welwitindolinone: identification of a monogeranylated indolenine as a cryptic common biosynthetic intermediate by an unusual magnesium-dependent aromatic prenyltransferase. Chem Commun (Camb) 2016, 52 (8), 1737-40.
9. Newmister, S. A.; Li, S.; Garcia-Borras, M.; Sanders, J. N.; Yang, S.; Lowell, A. N.; Yu, F.; Smith, J. L.; Williams, R. M.; Houk, K. N.; Sherman, D. H., Structural basis of the Cope rearrangement and cyclization in hapalindole biogenesis. Nat Chem Biol 2018, 14 (4), 345-351.
10. Chen, C. C.; Hu, X.; Tang, X.; Yang, Y.; Ko, T. P.; Gao, J.; Zheng, Y.; Huang, J. W.; Yu, Z.; Li, L.; Han, S.; Cai, N.; Zhang, Y.; Liu, W.; Guo, R. T., The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018, 57 (46), 15060-15064.
11. Tang, X.; Xue, J.; Yang, Y.; Ko, T.-P.; Chen, C.-Y.; Dai, L.; Guo, R.-T.; Zhang, Y.; Chen, C.-C., Structural insights into the calcium dependence of Stig cyclases. RSC Advances 2019, 9 (23), 13182-13185.
12. Li, S.; Newmister, S. A.; Lowell, A. N.; Zi, J.; Chappell, C. R.; Yu, F.; Hohlman, R. M.; Orjala, J.; Williams, R. M.; Sherman, D. H., Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor-Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020, 59 (21), 8166-8172.
13. D. C. WIGFIELD: S. FEINER, G. M. a. K. T., INVESTIGATIONS ON THE QUESTION OF MULTIPLE MECHANISMS IN THE COPE REARRANGEMENT-’. 1974.
14. Reichardt, C., Solvent effects in organic chemistry. Verlag Chemie: Weinheim; New York, 1979.
15. FEINE, D. C. W. A. S., Solvent effects in the Cope rearrangement. 1969.
16. Mitsuhashi Tsutomu 1 , Y. G., Analysis of Solvent Effects on the Rate of the Cope Rearrangement: Evidence for Its Hydrogen-Bond-Insusceptible Nature. 1990.
17. LUTZ, R. P., Catalysis of the Cope and Claisen Rearrangements. Chem. Rev. 1984, 84.
18. Hiroyuki Nakamura, H. I., Masateru Ito, and Yoshinori Yamamoto*, Palladium(0)-Catalyzed Cope Rearrangement of Acyclic 1,5-Dienes. Bis(π-allyl)palladium(II) Intermediate. 1999.
19. Sommer, H.; Weissbrod, T.; Marek, I., A Tandem Iridium-Catalyzed "Chain-Walking"/Cope Rearrangement Sequence. ACS Catal 2019, 9 (3), 2400-2406.
20. Chollet, W. G. D. a. A., ACID CATALYZED COPE REARRANGEMENTS OF P-ACYL-1,5-DIENES. 1981.
21. Kaldre, D.; Gleason, J. L., An Organocatalytic Cope Rearrangement. Angew Chem Int Ed Engl 2016, 55 (38), 11557-61.
22. Paquette, L. A., RECENT APPLICATIONS OF ANIONIC OXY-COPE REARRANIT, EMENTS. 1997.
23. Tanner, M. E., Mechanistic studies on the indole prenyltransferases. Nat Prod Rep 2015, 32 (1), 88-101.
24. Zhu, Q.; Liu, X., Molecular and genetic basis for early stage structural diversifications in hapalindole-type alkaloid biogenesis. Chem Commun (Camb) 2017, 53 (19), 2826-2829.
25. P.Valleau, G. M. T., Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974.
26. G.M.TorrieJ.P.Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977.
27. Parrinello, A. L. a. M., Escaping free-energy minima. Proceedings of the National Academy of Sciences 2002.
28. Darve, E.; Pohorille, A., Calculating free energies using average force. The Journal of Chemical Physics 2001, 115 (20), 9169-9183.
29. Rodriguez-Gomez, D.; Darve, E.; Pohorille, A., Assessing the efficiency of free energy calculation methods. J Chem Phys 2004, 120 (8), 3563-78.
30. Sgrignani, J.; Magistrato, A., QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catalysis 2015, 5 (6), 3864-3875.
31. Voice, A. T.; Tresadern, G.; Twidale, R. M.; van Vlijmen, H.; Mulholland, A. J., Mechanism of covalent binding of ibrutinib to Bruton′s tyrosine kinase revealed by QM/MM calculations. Chem Sci 2021, 12 (15), 5511-5516.
32. ROSENBERG, S. K. a. J. M., Mu1 t i dimensional Fr e e - Ene r gy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry 1995.
33. Kästner, J., Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1 (6), 932-942.
34. Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V., H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012, 40 (Web Server issue), W537-41.
35. Alexander D. MacKerell, J., *,† Michael Feig,‡ and Charles L. Brooks, III, Improved Treatment of the Protein Backbone in Empirical Force Fields. 2004.
36. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D., Jr., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010, 31 (4), 671-90.
37. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.; Mackerell, A. D., Jr., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 2012, 8 (9), 3257-3273.
38. Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A. D., Jr., Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 2012, 33 (31), 2451-68.
39. Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Henin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kale, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E., Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020, 153 (4), 044130.
40. Vanommeslaeghe, K.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 2012, 52 (12), 3144-54.
41. Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 2012, 52 (12), 3155-68.
42. Mayne, C. G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. C., Rapid parameterization of small molecules using the Force Field Toolkit. J Comput Chem 2013, 34 (32), 2757-70.
43. William Humphrey, A. D., and Klaus Schulten, VMD: Visual Molecular Dynamics. Journal of Molecular Graphics 1996.
44. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-4621.
45. Neese, F., The ORCA program system. WIREs Computational Molecular Science 2011, 2 (1), 73-78.
46. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
47. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988, 37 (2), 785-789.
48. AI-Laham, G. A. P. a. M. A., A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. 1991.
49. Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 2004, 25 (12), 1463-73.
50. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011, 32 (7), 1456-65.
51. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free-energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16 (11), 1339-1350. |