參考文獻 |
(1) Ferlay J, E. M., Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global Cancer Observatory: Cancer Today (version 1.1). Lyon, France: International Agency for Research on Cancer. 2024. https://gco.iarc.who.int/today (accessed 2024 0517).
(2) 〈110 年癌症登記報告〉; 衛生福利部國民健康署, 2023 年 11 月 10 日.
https://www.hpa.gov.tw/Pages/List.aspx?nodeid=269.
(3) Sherman, S. I. Thyroid carcinoma. Lancet 2003, 361 (9356), 501-511. DOI: 10.1016/s0140- 6736(03)12488-9 From NLM.
(4) Cancer Research UK, https://www.cancerresearchuk.org/about-cancer/thyroid-cancer/stages- types/typese (accessed 2024 0519).
(5) Pacini, F.; Castagna, M. G. Approach to and treatment of differentiated thyroid carcinoma. Med Clin North Am 2012, 96 (2), 369-383. DOI: 10.1016/j.mcna.2012.01.002 From NLM.
(6) Giuffrida, D.; Giuffrida, R.; Puliafito, I.; Vella, V.; Memeo, L.; Puglisi, C.; Regalbuto, C.; Pellegriti, G.; Forte, S.; Belfiore, A. Thyroidectomy as Treatment of Choice for Differentiated Thyroid Cancer. Int J Surg Oncol 2019, 2019, 2715260. DOI: 10.1155/2019/2715260 From NLM. (7) Cooper, D. S.; Doherty, G. M.; Haugen, B. R.; Kloos, R. T.; Lee, S. L.; Mandel, S. J.; Mazzaferri, E. L.; McIver, B.; Pacini, F.; Schlumberger, M.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19 (11), 1167-1214. DOI: 10.1089/thy.2009.0110 From NLM.
(8) Schlumberger, M.; Catargi, B.; Borget, I.; Deandreis, D.; Zerdoud, S.; Bridji, B.; Bardet, S.; Leenhardt, L.; Bastie, D.; Schvartz, C.; et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 2012, 366 (18), 1663-1673. DOI: 10.1056/NEJMoa1108586 From NLM.
(9) Momesso, D. P.; Vaisman, F.; Yang, S. P.; Bulzico, D. A.; Corbo, R.; Vaisman, M.; Tuttle, R. M. Dynamic Risk Stratification in Patients with Differentiated Thyroid Cancer Treated Without Radioactive Iodine. The Journal of Clinical Endocrinology & Metabolism 2016, 101 (7), 2692- 2700. DOI: 10.1210/jc.2015-4290 (acccessed 5/18/2024).
(10) Jonklaas, J.; Sarlis, N. J.; Litofsky, D.; Ain, K. B.; Bigos, S. T.; Brierley, J. D.; Cooper, D. S.; Haugen, B. R.; Ladenson, P. W.; Magner, J.; et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 2006, 16 (12), 1229-1242. DOI: 10.1089/thy.2006.16.1229 From NLM.
(11) Schmidbauer, B.; Menhart, K.; Hellwig, D.; Grosse, J. Differentiated Thyroid Cancer- Treatment: State of the Art. Int J Mol Sci 2017, 18 (6). DOI: 10.3390/ijms18061292 From NLM. (12) Hovens, G. C.; Stokkel, M. P.; Kievit, J.; Corssmit, E. P.; Pereira, A. M.; Romijn, J. A.; Smit, J. W. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab 2007, 92 (7), 2610-2615. DOI: 10.1210/jc.2006-2566 From NLM.
(13) Haugen, B. R.; Alexander, E. K.; Bible, K. C.; Doherty, G. M.; Mandel, S. J.; Nikiforov, Y. E.; Pacini, F.; Randolph, G. W.; Sawka, A. M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26 (1), 1-133. DOI: 10.1089/thy.2015.0020 From NLM.
(14) Lamartina, L.; Grani, G.; Durante, C.; Borget, I.; Filetti, S.; Schlumberger, M. Follow-up of differentiated thyroid cancer - what should (and what should not) be done. Nat Rev Endocrinol 2018, 14 (9), 538-551. DOI: 10.1038/s41574-018-0068-3 From NLM.
(15) Whitley, R. J.; Ain, K. B. Thyroglobulin: a specific serum marker for the management of thyroid carcinoma. Clin Lab Med 2004, 24 (1), 29-47. DOI: 10.1016/j.cll.2004.01.001 From NLM. (16) Bournaud, C.; Raverot, V. Follow-up of differentiated thyroid carcinoma. Ann Endocrinol (Paris) 2015, 76 (1 Suppl 1), 1s27-33. DOI: 10.1016/s0003-4266(16)30011-7 From NLM.
(17) Peiris, A. N.; Medlock, D.; Gavin, M. Thyroglobulin for Monitoring for Thyroid Cancer Recurrence. JAMA 2019, 321 (12), 1228-1228. DOI: 10.1001/jama.2019.0803 (acccessed 5/18/2024).
(18) Wheeler, S. E.; Liu, L.; Blair, H. C.; Sivak, R.; Longo, N.; Tischler, J.; Mulvey, K.; Palmer, O. M. P. Clinical laboratory verification of thyroglobulin concentrations in the presence of autoantibodies to thyroglobulin: comparison of EIA, radioimmunoassay and LC MS/MS measurements in an Urban Hospital. BMC Research Notes 2017, 10 (1), 725. DOI: 10.1186/s13104-017-3050-6.
(19) Sipos, J. A.; Aloi, J.; Gianoukakis, A.; Lee, S. L.; Klopper, J. P.; Kung, J. T.; Lupo, M. A.; Morgenstern, D.; Prat-Knoll, C.; Schuetzenmeister, A.; et al. Thyroglobulin Cutoff Values for Detecting Excellent Response to Therapy in Patients With Differentiated Thyroid Cancer. J Endocr Soc 2023, 7 (9), bvad102. DOI: 10.1210/jendso/bvad102 From NLM.
(20) Mazzaferri, E. L.; Robbins, R. J.; Spencer, C. A.; Braverman, L. E.; Pacini, F.; Wartofsky, L.; Haugen, B. R.; Sherman, S. I.; Cooper, D. S.; Braunstein, G. D.; et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 2003, 88 (4), 1433-1441. DOI: 10.1210/jc.2002-021702 From NLM.
(21) Pacini, F.; Molinaro, E.; Castagna, M. G.; Agate, L.; Elisei, R.; Ceccarelli, C.; Lippi, F.; Taddei, D.; Grasso, L.; Pinchera, A. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab 2003, 88 (8), 3668-3673. DOI: 10.1210/jc.2002-021925 From NLM.
(22) Chomsky-Higgins, K. H.; Nydam, T. L.; McIntyre, R. C.; Palmer, B. J. A. Chapter 62 - Thyroid Nodules and Cancer. In Abernathy′s Surgical Secrets (Seventh Edition), Harken, A. H., Moore, E. E. Eds.; Elsevier, 2018; pp 271-276.
(23) Spencer, C. A. Recoveries cannot be used to authenticate thyroglobulin (Tg) measurements when sera contain Tg autoantibodies. Clin Chem 1996, 42 (5), 661-663. From NLM.
(24) Ericsson, U. B.; Christensen, S. B.; Thorell, J. I. A high prevalence of thyroglobulin autoantibodies in adults with and without thyroid disease as measured with a sensitive solid-phase immunosorbent radioassay. Clin Immunol Immunopathol 1985, 37 (2), 154-162. DOI: 10.1016/0090-1229(85)90146-1 From NLM.
(25) Demers, L. M.; Spencer, C. A. Laboratory medicine practice guidelines: laboratory support for the diagnosis and monitoring of thyroid disease. Clin Endocrinol (Oxf) 2003, 58 (2), 138-140. DOI: 10.1046/j.1365-2265.2003.01681.x From NLM.
(26) Spencer, C. A. Clinical Utility of Thyroglobulin Antibody (TgAb) Measurements for Patients with Differentiated Thyroid Cancers (DTC). The Journal of Clinical Endocrinology & Metabolism 2011, 96 (12), 3615-3627. DOI: 10.1210/jc.2011-1740 (acccessed 1/14/2024).
(27) Ringel, M. D.; Nabhan, F. Approach to follow-up of the patient with differentiated thyroid cancer and positive anti-thyroglobulin antibodies. J Clin Endocrinol Metab 2013, 98 (8), 3104- 3110. DOI: 10.1210/jc.2013-1412 From NLM.
(28) Spencer, C. A. Challenges of Serum Thyroglobulin (Tg) Measurement in the Presence of Tg Autoantibodies. The Journal of Clinical Endocrinology & Metabolism 2004, 89 (8), 3702-3704. DOI: 10.1210/jc.2004-0986 (acccessed 5/28/2024).
(29) Spencer, C. A.; Takeuchi, M.; Kazarosyan, M.; Wang, C. C.; Guttler, R. B.; Singer, P. A.; Fatemi, S.; LoPresti, J. S.; Nicoloff, J. T. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998, 83 (4), 1121-1127. DOI: 10.1210/jcem.83.4.4683 From NLM.
(30) Goto, M.; Kuribayashi, K.; Umemori, Y.; Ohe, Y.; Asanuma, K.; Tanaka, M.; Kobayashi, D.; Watanabe, N. High prevalence of human anti-mouse antibodies in the serum of colorectal cancer patients. Anticancer Res 2010, 30 (10), 4353-4356. From NLM.
(31) Koshida, S.; Asanuma, K.; Kuribayashi, K.; Goto, M.; Tsuji, N.; Kobayashi, D.; Tanaka, M.; Watanabe, N. Prevalence of human anti-mouse antibodies (HAMAs) in routine examinations. Clinica Chimica Acta 2010, 411 (5), 391-394. DOI: https://doi.org/10.1016/j.cca.2009.12.006. (32) Preissner, C. M.; O’Kane, D. J.; Singh, R. J.; Morris, J. C.; Grebe, S. K. G. Phantoms in the Assay Tube: Heterophile Antibody Interferences in Serum Thyroglobulin Assays. The Journal of Clinical Endocrinology & Metabolism 2003, 88 (7), 3069-3074. DOI: 10.1210/jc.2003-030122 (acccessed 1/14/2024).
(33) Spencer, C.; Fatemi, S.; Singer, P.; Nicoloff, J.; Lopresti, J. Serum Basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin- stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid 2010, 20 (6), 587-595. DOI: 10.1089/thy.2009.0338 From NLM.
(34) Verburg, F. A.; Wäschle, K.; Reiners, C.; Giovanella, L.; Lentjes, E. G. Heterophile antibodies rarely influence the measurement of thyroglobulin and thyroglobulin antibodies in differentiated thyroid cancer patients. Horm Metab Res 2010, 42 (10), 736-739. DOI: 10.1055/s- 0030-1254132 From NLM.
(35) Rotmensch, S.; Cole, L. A. False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations. Lancet 2000, 355 (9205), 712-715. DOI: 10.1016/s0140-6736(00)01324-6 From NLM.
(36) Kricka, L. J. Human anti-animal antibody interferences in immunological assays. Clin Chem 1999, 45 (7), 942-956. From NLM.
(37) Hennig, C.; Rink, L.; Fagin, U.; Jabs, W. J.; Kirchner, H. The influence of naturally occurring heterophilic anti-immunoglobulin antibodies on direct measurement of serum proteins using sandwich ELISAs. J Immunol Methods 2000, 235 (1-2), 71-80. DOI: 10.1016/s0022- 1759(99)00206-9 From NLM.
(38) Black, E. G.; Hoffenberg, R. Should one measure serum thyroglobulin in the presence of anti- thyroglobulin antibodies? Clin Endocrinol (Oxf) 1983, 19 (5), 597-601. DOI: 10.1111/j.1365- 2265.1983.tb00036.x From NLM.
(39) Spencer, C. A.; LoPresti, J. S. Technology Insight: measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nature Clinical Practice Endocrinology & Metabolism 2008, 4 (4), 223-233. DOI: 10.1038/ncpendmet0757.
(40) Spencer, C.; Petrovic, I.; Fatemi, S. Current thyroglobulin autoantibody (TgAb) assays often fail to detect interfering TgAb that can result in the reporting of falsely low/undetectable serum Tg IMA values for patients with differentiated thyroid cancer. J Clin Endocrinol Metab 2011, 96 (5), 1283-1291. DOI: 10.1210/jc.2010-2762 From NLM.
(41) Strathmann, F. G.; Ka, M. M.; Rainey, P. M.; Baird, G. S. Use of the BD vacutainer rapid serum tube reduces false-positive results for selected beckman coulter Unicel DxI immunoassays. Am J Clin Pathol 2011, 136 (2), 325-329. DOI: 10.1309/ajcpzofj7kx5qmrw From NLM.
(42) Hoofnagle, A. N.; Becker, J. O.; Wener, M. H.; Heinecke, J. W. Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem 2008, 54 (11), 1796-1804. DOI: 10.1373/clinchem.2008.109652 From NLM.
(43) Kushnir, M. M.; Rockwood, A. L.; Roberts, W. L.; Abraham, D.; Hoofnagle, A. N.; Meikle, A. W. Measurement of Thyroglobulin by Liquid Chromatography–Tandem Mass Spectrometry in Serum and Plasma in the Presence of Antithyroglobulin Autoantibodies. Clinical Chemistry 2013, 59 (6), 982-990. DOI: 10.1373/clinchem.2012.195594 (acccessed 5/14/2024).
(44) Netzel, B. C.; Grebe, S. K.; Algeciras-Schimnich, A. Usefulness of a thyroglobulin liquid chromatography-tandem mass spectrometry assay for evaluation of suspected heterophile interference. Clin Chem 2014, 60 (7), 1016-1018. DOI: 10.1373/clinchem.2014.224816 From NLM.
(45) Birhanu, A. G. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clinical Proteomics 2023, 20 (1), 32. DOI: 10.1186/s12014-023-09424-x.
(46) Lee, S. J.; Yoon, T.; Ha, J. W.; Kim, J.; Lee, K. H.; Lee, J. A.; Kim, C. H.; Lee, S.-W.; Kim, J. H.; Ahn, J. Y.; et al. Prevalence, clinical significance, and persistence of autoantibodies in COVID-19. Virology Journal 2023, 20 (1), 236. DOI: 10.1186/s12985-023-02191-z.
(47) Dincer Yazan, C.; Ilgin, C.; Elbasan, O.; Apaydin, T.; Dashdamirova, S.; Yigit, T.; Sili, U.; Karahasan Yagci, A.; Sirikci, O.; Haklar, G.; et al. The Association of Thyroid Hormone Changes with Inflammatory Status and Prognosis in COVID-19. Int J Endocrinol 2021, 2021, 2395212. DOI: 10.1155/2021/2395212 From NLM.
(48) Świątkowska-Stodulska, R.; Berlińska, A.; Puchalska-Reglińska, E. Thyroglobulin levels in COVID-19-positive patients: Correlations with thyroid function tests, inflammatory markers, and glucocorticoid use. Front Endocrinol (Lausanne) 2022, 13, 1031188. DOI: 10.3389/fendo.2022.1031188 From NLM.
(49) Boja, E. S.; Rodriguez, H. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 2012, 12 (8), 1093-1110. DOI: 10.1002/pmic.201100387 From NLM.
(50) Sato, Y.; Miyashita, A.; Iwatsubo, T.; Usui, T. Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 2012, 40 (7), 1389-1396. DOI: 10.1124/dmd.112.045054 From NLM.
(51) Zheng, J.; Mandal, R.; Wishart, D. S. A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum. Analytica Chimica Acta 2018, 1037, 159-167. DOI: https://doi.org/10.1016/j.aca.2018.01.021.
(52) Krasny, L.; Huang, P. H. Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Molecular Omics 2021, 17 (1), 29-42, 10.1039/D0MO00072H. DOI: 10.1039/D0MO00072H.
(53) Timms, J. F.; Hale, O. J.; Cramer, R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Rev Proteomics 2016, 13 (6), 593-607. DOI: 10.1080/14789450.2016.1182431 From NLM.
(54) Seong, Y.; Yoo, Y. S.; Akter, H.; Kang, M.-J. Sample preparation for detection of low abundance proteins in human plasma using ultra-high performance liquid chromatography coupled with highly accurate mass spectrometry. Journal of Chromatography B 2017, 1060, 272-280. DOI: https://doi.org/10.1016/j.jchromb.2017.06.023.
(55) Gillet, L. C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis*. Molecular & Cellular Proteomics 2012, 11 (6), O111.016717. DOI: https://doi.org/10.1074/mcp.O111.016717.
(56) Tully, B.; Balleine, R. L.; Hains, P. G.; Zhong, Q.; Reddel, R. R.; Robinson, P. J. Addressing the Challenges of High-Throughput Cancer Tissue Proteomics for Clinical Application: ProCan. Proteomics 2019, 19 (21-22), e1900109. DOI: 10.1002/pmic.201900109 From NLM.
(57) Barkovits, K.; Pacharra, S.; Pfeiffer, K.; Steinbach, S.; Eisenacher, M.; Marcus, K.; Uszkoreit, J. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library- based Data-independent Acquisition. Mol Cell Proteomics 2020, 19 (1), 181-197. DOI: 10.1074/mcp.RA119.001714 From NLM.
(58) Poulos, R. C.; Hains, P. G.; Shah, R.; Lucas, N.; Xavier, D.; Manda, S. S.; Anees, A.; Koh, J. M. S.; Mahboob, S.; Wittman, M.; et al. Strategies to enable large-scale proteomics for reproducible research. Nat Commun 2020, 11 (1), 3793. DOI: 10.1038/s41467-020-17641-3 From NLM.
(59) Lange, V.; Picotti, P.; Domon, B.; Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4, 222. DOI: 10.1038/msb.2008.61 From NLM.
(60) Wu, W.; Dai, R.-T.; Bendixen, E. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes. Journal of Agricultural and Food Chemistry 2019, 67 (5), 1608- 1618. DOI: 10.1021/acs.jafc.8b05459.
(61) Mermelekas, G.; Vlahou, A.; Zoidakis, J. SRM/MRM targeted proteomics as a tool for biomarker validation and absolute quantification in human urine. Expert Rev Mol Diagn 2015, 15 (11), 1441-1454. DOI: 10.1586/14737159.2015.1093937 From NLM.
(62) Masuda, T.; Mori, A.; Ito, S.; Ohtsuki, S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metabolism and Pharmacokinetics 2021, 36, 100361. DOI: https://doi.org/10.1016/j.dmpk.2020.09.006.
(63) Mani, D. R.; Abbatiello, S. E.; Carr, S. A. Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics 2012, 13 Suppl 16 (Suppl 16), S9. DOI: 10.1186/1471-2105-13-s16-s9 From NLM.
(64) Fung, A. W. S.; Sugumar, V.; Ren, A. H.; Kulasingam, V. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol 2020, 73 (2), 61-69. DOI: 10.1136/jclinpath-2019- 206269 From NLM.
(65) Shi, T.; Song, E.; Nie, S.; Rodland, K. D.; Liu, T.; Qian, W. J.; Smith, R. D. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016, 16 (15-16), 2160- 2182. DOI: 10.1002/pmic.201500449 From NLM.
(66) Shi, T.; Fillmore, T. L.; Sun, X.; Zhao, R.; Schepmoes, A. A.; Hossain, M.; Xie, F.; Wu, S.; Kim, J. S.; Jones, N.; et al. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A 2012, 109 (38), 15395-15400. DOI: 10.1073/pnas.1204366109 From NLM.
(67) Pernemalm, M.; Lewensohn, R.; Lehtiö, J. Affinity prefractionation for MS-based plasma proteomics. Proteomics 2009, 9 (6), 1420-1427. DOI: 10.1002/pmic.200800377 From NLM. (68) Sparbier, K.; Wenzel, T.; Dihazi, H.; Blaschke, S.; Müller, G. A.; Deelder, A.; Flad, T.; Kostrzewa, M. Immuno-MALDI-TOF MS: new perspectives for clinical applications of mass spectrometry. Proteomics 2009, 9 (6), 1442-1450. DOI: 10.1002/pmic.200800616 From NLM. (69) Ravela, S.; Valmu, L.; Domanskyy, M.; Koistinen, H.; Kylänpää, L.; Lindström, O.; Stenman, J.; Hämäläinen, E.; Stenman, U. H.; Itkonen, O. An immunocapture-LC-MS-based assay for serum SPINK1 allows simultaneous quantification and detection of SPINK1 variants. Anal Bioanal Chem 2018, 410 (6), 1679-1688. DOI: 10.1007/s00216-017-0803-y From NLM.
(70) Netzel, B. C.; Grant, R. P.; Hoofnagle, A. N.; Rockwood, A. L.; Shuford, C. M.; Grebe, S. K. First Steps toward Harmonization of LC-MS/MS Thyroglobulin Assays. Clin Chem 2016, 62 (1), 297-299. DOI: 10.1373/clinchem.2015.245266 From NLM.
(71) Farré-Segura, J.; Le Goff, C.; Lukas, P.; Cobraiville, G.; Fillet, M.; Servais, A.-C.; Delanaye, P.; Cavalier, E. Validation of an LC-MS/MS Method Using Solid-Phase Extraction for the Quantification of 1-84 Parathyroid Hormone: Toward a Candidate Reference Measurement Procedure. Clinical Chemistry 2022, 68 (11), 1399-1409. DOI: 10.1093/clinchem/hvac135 (acccessed 6/17/2024).
(72) Schindler, S. E.; Bollinger, J. G.; Ovod, V.; Mawuenyega, K. G.; Li, Y.; Gordon, B. A.; Holtzman, D. M.; Morris, J. C.; Benzinger, T. L. S.; Xiong, C.; et al. High-precision plasma β- amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019, 93 (17), e1647- e1659. DOI: doi:10.1212/WNL.0000000000008081.
(73) Bystrom, C. E.; Sheng, S.; Clarke, N. J. Narrow Mass Extraction of Time-of-Flight Data for Quantitative Analysis of Proteins: Determination of Insulin-Like Growth Factor-1. Analytical Chemistry 2011, 83 (23), 9005-9010. DOI: 10.1021/ac201800g.
(74) Taylor, S. W.; Clarke, N. J.; Chen, Z.; McPhaul, M. J. A high-throughput mass spectrometry assay to simultaneously measure intact insulin and C-peptide. Clinica Chimica Acta 2016, 455, 202-208. DOI: https://doi.org/10.1016/j.cca.2016.01.019.
(75) Lim, A.; Prokaeva, T.; McComb, M. E.; O′Connor, P. B.; Théberge, R.; Connors, L. H.; Skinner, M.; Costello, C. E. Characterization of transthyretin variants in familial transthyretin amyloidosis by mass spectrometric peptide mapping and DNA sequence analysis. Anal Chem 2002, 74 (4), 741-751. DOI: 10.1021/ac010780+ From NLM.
(76) Hoofnagle, A. N.; Roth, M. Y. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J Clin Endocrinol Metab 2013, 98 (4), 1343-1352. DOI: 10.1210/jc.2012-4172 From NLM.
(77) Shuford, C. M.; Johnson, J. S.; Thompson, J. W.; Holland, P. L.; Hoofnagle, A. N.; Grant, R. P. More sensitivity is always better: Measuring sub-clinical levels of serum thyroglobulin on a μLC–MS/MS system. Clinical Mass Spectrometry 2020, 15, 29-35. DOI: https://doi.org/10.1016/j.clinms.2020.01.001.
(78) Shi, J.; Phipps, W. S.; Owusu, B. Y.; Henderson, C. M.; Laha, T. J.; Becker, J. O.; Razavi, M.; Emrick, M. A.; Hoofnagle, A. N. A distributable LC-MS/MS method for the measurement of serum thyroglobulin. J Mass Spectrom Adv Clin Lab 2022, 26, 28-33. DOI: 10.1016/j.jmsacl.2022.09.005 From NLM.
(79) Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207. DOI: 10.1038/nature01511.
(80) Whiteaker, J. R.; Paulovich, A. G. Peptide immunoaffinity enrichment coupled with mass spectrometry for peptide and protein quantification. Clin Lab Med 2011, 31 (3), 385-396. DOI: 10.1016/j.cll.2011.07.004 From NLM.
(81) Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Analytical Chemistry 2003, 75 (17), 4646-4658. DOI: 10.1021/ac0341261.
(82) Clarke, N. J.; Zhang, Y.; Reitz, R. E. A Novel Mass Spectrometry–Based Assay for the Accurate Measurement of Thyroglobulin from Patient Samples Containing Antithyroglobulin Autoantibodies. Journal of Investigative Medicine 2012, 60 (8), 1157-1163. DOI: 10.2310/JIM.0b013e318276deb4 (acccessed 2024/05/14).
(83) Netzel, B. C.; Grebe, S. K.; Carranza Leon, B. G.; Castro, M. R.; Clark, P. M.; Hoofnagle, A. N.; Spencer, C. A.; Turcu, A. F.; Algeciras-Schimnich, A. Thyroglobulin (Tg) Testing Revisited: Tg Assays, TgAb Assays, and Correlation of Results With Clinical Outcomes. J Clin Endocrinol Metab 2015, 100 (8), E1074-1083. DOI: 10.1210/jc.2015-1967 From NLM.
(84) Whiteaker, J. R.; Zhao, L.; Lin, C.; Yan, P.; Wang, P.; Paulovich, A. G. Sequential multiplexed analyte quantification using peptide immunoaffinity enrichment coupled to mass spectrometry. Mol Cell Proteomics 2012, 11 (6), M111.015347. DOI: 10.1074/mcp.M111.015347 From NLM.
(85) Anderson, N. L.; Jackson, A.; Smith, D.; Hardie, D.; Borchers, C.; Pearson, T. W. SISCAPA peptide enrichment on magnetic beads using an in-line bead trap device. Mol Cell Proteomics 2009, 8 (5), 995-1005. DOI: 10.1074/mcp.M800446-MCP200 From NLM.
(86) Anderson, N. L.; Anderson, N. G.; Haines, L. R.; Hardie, D. B.; Olafson, R. W.; Pearson, T. W. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 2004, 3 (2), 235-244. DOI: 10.1021/pr034086h From NLM.
(87) Han, C.-L.; Lai, C.-T.; Reyes, A. J.; Yang, H.-C.; Lu, J.-Y.; Shih, S.-R.; Chen, K.-Y.; Hoofnagle, A. N.; Yu, S.-L.; Bocik, W.; et al. Lessons learned: establishing a CLIA-equivalent laboratory for targeted mass spectrometry assays – navigating the transition from research to clinical practice. Clinical Proteomics 2024, 21 (1), 12. DOI: 10.1186/s12014-024-09455-y.
(88) Strathmann, F. G.; Hoofnagle, A. N. Current and future applications of mass spectrometry to the clinical laboratory. Am J Clin Pathol 2011, 136 (4), 609-616. DOI: 10.1309/ajcpw0ta8obbngck From NLM.
(89) Jannetto, P. J.; Fitzgerald, R. L. Effective Use of Mass Spectrometry in the Clinical Laboratory. Clinical Chemistry 2016, 62 (1), 92-98. DOI: 10.1373/clinchem.2015.248146 (acccessed 6/3/2024).
(90) Banerjee, S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega 2020, 5 (5), 2041-2048. DOI: 10.1021/acsomega.9b03764 From NLM.
(91) Adaway, J. E.; Keevil, B. G.; Owen, L. J. Liquid chromatography tandem mass spectrometry in the clinical laboratory. Ann Clin Biochem 2015, 52 (Pt 1), 18-38. DOI: 10.1177/0004563214557678 From NLM.
(92) Rolland, D. C. M.; Lim, M. S.; Elenitoba-Johnson, K. S. J. Mass spectrometry and proteomics in hematology. Semin Hematol 2019, 56 (1), 52-57. DOI: 10.1053/j.seminhematol.2018.05.009 From NLM.
(93) Füzéry, A. K.; Levin, J.; Chan, M. M.; Chan, D. W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clinical Proteomics 2013, 10 (1), 13. DOI: 10.1186/1559-0275-10-13.
(94) Ryu, J.; Thomas, S. N. Quantitative Mass Spectrometry-Based Proteomics for Biomarker Development in Ovarian Cancer. Molecules 2021, 26 (9), 2674.
(95) Dichtl, K.; Klugherz, I.; Greimel, H.; Luxner, J.; Köberl, J.; Friedl, S.; Steinmetz, I.; Leitner, E. A head-to-head comparison of three MALDI-TOF mass spectrometry systems with 16S rRNA gene sequencing. Journal of Clinical Microbiology 2023, 61 (10), e01913-01922. DOI: 10.1128/jcm.01913-22 (acccessed 2024/06/03).
(96) Lathrop, J. T.; Jeffery, D. A.; Shea, Y. R.; Scholl, P. F.; Chan, M. M. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry. Clin Chem 2016, 62 (1), 41-47. DOI: 10.1373/clinchem.2015.244731 From NLM.
(97) Lynch, K. L. Accreditation and Quality Assurance for Clinical Liquid Chromatography-Mass Spectrometry Laboratories. Clin Lab Med 2018, 38 (3), 515-526. DOI: 10.1016/j.cll.2018.05.002 From NLM.
(98) Ren, Z.; Sun, G.; Zhang, Q.; Zou, S.; Chen, J.; Zhao, W.; Hou, G.; Zhong, Z.; Li, J.; Ye, Y.; et al. LC-MS/MS-Based Absolute Quantitation of Hemoglobin Subunits from Dried Blood Spots Reveals Novel Biomarkers for α-Thalassemia Silent Carriers. Anal Chem 2023, 95 (24), 9244- 9251. DOI: 10.1021/acs.analchem.3c00895 From NLM.
(99) Parker, C. E.; Borchers, C. H. Mass spectrometry based biomarker discovery, verification, and validation – Quality assurance and control of protein biomarker assays. Molecular Oncology 2014, 8 (4), 840-858. DOI: https://doi.org/10.1016/j.molonc.2014.03.006.
(100) Demeuse, J. J.; Calaprice, C.; Huyghebaert, L. C.; Rechchad, M.; Peeters, S.; Cavalier, E.; Le Goff, C. Development and Validation of an Ultrasensitive LC-MS/MS Method for the Quantification of Melatonin in Human Saliva. J Am Soc Mass Spectrom 2023, 34 (6), 1056-1064. DOI: 10.1021/jasms.3c00021 From NLM.
(101) Fernández-Metzler, C.; Ackermann, B.; Garofolo, F.; Arnold, M. E.; DeSilva, B.; Gu, H.; Laterza, O.; Mao, Y.; Rose, M.; Vazvaei-Smith, F.; et al. Biomarker Assay Validation by Mass Spectrometry. The AAPS Journal 2022, 24 (3), 66. DOI: 10.1208/s12248-022-00707-z.
(102) McIntosh, M.; Fitzgibbon, M. Biomarker validation by targeted mass spectrometry. Nature Biotechnology 2009, 27 (7), 622-623. DOI: 10.1038/nbt0709-622.
(103) Abdelhameed, A. S.; Kadi, A. A.; Attwa, M. W.; AlRabiah, H. Validated LC-MS/MS assay for quantification of the newly approved tyrosine kinase inhibitor, dacomitinib, and application to investigating its metabolic stability. PLoS One 2019, 14 (4), e0214598. DOI: 10.1371/journal.pone.0214598 From NLM.
(104) Laboratory Developed Tests. FDA, https://www.fda.gov/medical-devices/in-vitro- diagnostics/laboratory-developed-tests (accessed 2024 0604).
(105) Marzinke, M. A.; Clarke, W.; Dietzen, D. J.; Hoofnagle, A. N.; McMillin, G. A.; Willrich, M. A. V. The VALIDity of Laboratory Developed Tests: Leave it to the experts? J Mass Spectrom Adv Clin Lab 2023, 27, 1-6. DOI: 10.1016/j.jmsacl.2022.12.002 From NLM.
(106) Lin, Y.; Thomas, S. N. Impact of VALID Act implementation on mass spectrometry-based clinical proteomic laboratory developed tests. J Mass Spectrom Adv Clin Lab 2023, 28, 30-34. DOI: 10.1016/j.jmsacl.2023.02.001 From NLM.
(107) Liquid chromatography-mass spectrometry methods; CLSI C62, https://clsi.org/standards/products/clinical-chemistry-and-toxicology/documents/c62/.
(108) Lynch, K. L. CLSI C62-A: A New Standard for Clinical Mass Spectrometry. Clinical Chemistry 2016, 62 (1), 24-29. DOI: 10.1373/clinchem.2015.238626 (acccessed 6/3/2024).
(109) Quantitative Measurement of Proteins and Peptides by Mass Spectrometry; CLSI C64, https://clsi.org/standards/products/clinical-chemistry-and-toxicology/documents/c64/.
(110) Best, C. M.; Riley, D. V.; Laha, T. J.; Pflaum, H.; Zelnick, L. R.; Hsu, S.; Thummel, K. E.; Foster-Schubert, K. E.; Kuzma, J. N.; Cromer, G.; et al. Vitamin D in human serum and adipose tissue after supplementation. The American Journal of Clinical Nutrition 2021, 113 (1), 83-91. DOI: https://doi.org/10.1093/ajcn/nqaa295.
(111) Razavi, M.; Pope, M. E.; Soste, M. V.; Eyford, B. A.; Jackson, A. M.; Anderson, N. L.; Pearson, T. W. MALDI Immunoscreening (MiSCREEN): A method for selection of anti-peptide monoclonal antibodies for use in immunoproteomics. Journal of Immunological Methods 2011, 364 (1), 50-64. DOI: https://doi.org/10.1016/j.jim.2010.11.001.
(112) Li, H.; Ortiz, R.; Tran, L.; Hall, M.; Spahr, C.; Walker, K.; Laudemann, J.; Miller, S.; Salimi- Moosavi, H.; Lee, J. W. General LC-MS/MS Method Approach to Quantify Therapeutic Monoclonal Antibodies Using a Common Whole Antibody Internal Standard with Application to Preclinical Studies. Analytical Chemistry 2012, 84 (3), 1267-1273. DOI: 10.1021/ac202792n. (113) G38-生物醫學之分子檢測方法確認指引; Taiwan Accreditation Foundation,TAF,
https://www.taftw.org.tw/document/purchase/ (accessed 2023/11/13).
(114) SCIEX Triple QuadTM 5500+ System System User Guide; SCIEX, https://sciex.jp/content/dam/SCIEX/pdf/customer-docs/user-guide/5500plus-system-user-guide- en.pdf.
(115) Lazzari, E.; Souza Silva, É. A.; Bjerk, T. R.; Schneider, J. K.; Bastos Caramão, E. Evaluation of the matrix effect in the quantitative bio-oil analysis by gas chromatography. Fuel 2021, 290, 119866. DOI: https://doi.org/10.1016/j.fuel.2020.119866.
(116) Hahne, H.; Pachl, F.; Ruprecht, B.; Maier, S. K.; Klaeger, S.; Helm, D.; Médard, G.; Wilm, M.; Lemeer, S.; Kuster, B. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat Methods 2013, 10 (10), 989-991. DOI: 10.1038/nmeth.2610 From NLM.
(117) Strzelecka, D.; Holman, S. W.; Eyers, C. E. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics. International Journal of Mass Spectrometry 2015, 391, 157-160. DOI: https://doi.org/10.1016/j.ijms.2015.07.004. |