博碩士論文 111324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:18.118.163.110
姓名 陳佩暄(Pei-Xuan Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Na1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/ 醋酸纖維素複合型固態電解質應用於鈉離子電池之研究
(The Study of Na1+xAlxTi2-x(PO4)3 and Poly(vinylidenedifluoride)/Cellulose Acetate Composite Solid Electrolyte for Sodium-Ion Batteries)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究
★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
★ 氧化鎂/聚丙烯酸/聚偏二氟乙烯修飾聚丙烯隔離膜應用於鋰離子電池★ 以有機金屬框架製備鐵摻雜富鋰鎳錳鈷氧正極材料 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 鈉元素的豐富儲量與低廉成本,使其在鈉離子電池領域受到日益重視。過去數十年間,業界為推動鈉離子電池的實際應用投入了持續不懈的努力。然而,傳統液態電解質(LE)存在的可燃性和洩漏風險,構成了重大的安全隱憂。以固態電解質取代液態電解質被視為一種極具前景的策略,為有效解決LE的安全相關問題,因此本研究開發出更安全、穩定的固態電解質。
在本研究中,我們成功開發了一種適用於鈉離子電池的陶瓷/高分子複合固態電解質(CSE)薄膜。使用聚偏氟乙烯(Poly(vinylidene)difluoride, PVDF)、醋酸纖維素(Cellulose Acetate, CA)及鈉鹽(NaPF6) 混合形成高分子基體,隨後將水熱法合成的Na1+xAlxTi2-x(PO4)3(NATP)陶瓷粉末分散於基體溶液中,經由溶液澆鑄法製備而成開發具有最佳性能的CSE薄膜。透過優化鈉鹽混摻適量的NaPF6至高分子基體中(PVDF: CA: NaPF6 =4: 1: 2)後其離子電導率達2.1×10-4 S/cm。為了進⼀步改善固態電解質的熱穩定性及電化學性能,我們添加NATP至PVDF/CA/NaPF6高分子固態電解質中,發現當PVDF: CA: NaPF6 : NATP=4: 1: 2: 1時的CSE具有最佳的電化學性能,展現出卓越的熱穩定性/化學穩定性、較低可燃性和更佳的耐用程度。
實驗結果顯示,所開發的CSE薄膜具有良好的電化學穩定性和循環可逆性。其離子電導率高達5.2×10-4 S/cm以及高鈉離子轉移數0.66,在0.1 mA/cm2電流密度進行鈉沉積與剝落行為可維持超過600小時的穩定狀態,表明可以有效避免鈉枝晶形成所造成的電池短路等安全性問題。將所開發的CSE搭配少量電解液(1M NaPF6 in PC/EMC)應用於鎳鐵錳層狀氧化物正極材料的鈉離子半電池能獲得約120 mAh/g @ 0.2 C的放電容量,而全電池體系則可實現112.6 mAh/g @ 0.2 C的放電容量,並在循環200圈後仍有85 %以上電容保持率同時具有穩定的庫倫效率(~100 %),亦可以應用於軟包電池當中擁有優異的電化學表現。
綜合上述結果,本研究開發的CSE固態電解質薄膜不僅具備寬廣的電化學電位窗口(~5 V) 和卓越的高溫熱穩定性(~250 ℃),其高離子電導率、高離子轉移數更有助於提升鈉離子電池的放電容量,這一類CSE複合材料在鈉離子電池領域展現出了廣闊的應用前景。
摘要(英) The abundant reserves and low cost of sodium have garnered increasing attention for sodium-ion batteries (SIBs). Over the past few decades, significant industry efforts have been dedicated to promoting the practical application of SIBs. However, the flammability and leakage risks associated with traditional liquid electrolytes (LEs) present substantial safety concerns. To address these safety issues, this study aims to develop safer and more stable solid-state electrolytes, with the replacement of LEs , which is considered a highly promising strategy.
In this study, we successfully developed a polymer/ceramic composite solid electrolyte (CSE) film for sodium-ion batteries (SIBs) applications. The polymer matrix was formed by blending poly(vinylidene fluoride) (PVDF), cellulose acetate (CA), and sodium salt (NaPF6). Subsequently, Na1+xAlxTi2-x(PO4)3 (NATP) ceramic powder, synthesized via the hydrothermal method, was dispersed into the matrix solution. The CSE films were then fabricated using a solution casting method to achieve optimal performance. By optimizing the sodium salt content, with the mixture ratio of PVDF: CA: NaPF6 = 4: 1: 2, an ionic conductivity of 2.1×10-4 S/cm was achieved. To further enhance the thermal stability and electrochemical performance of the solid-state electrolyte, NATP was incorporated into the PVDF/CA/NaPF6 polymer electrolyte. The optimal electrochemical performance was observed with a composition of PVDF: CA: NaPF6: NATP = 4: 1: 2: 1, exhibiting superior thermal stability, chemical stability, reduced flammability, and enhanced durability.
Experimental results demonstrated that the developed CSE film possesses excellent electrochemical stability and cycling reversibility. The CSE achieved a high ionic conductivity of 5.2×10-4 S/cm and a high sodium ion transference number of 0.66. It maintained stable sodium deposition and stripping behavior for over 600 hours at a current density of 0.1 mA/cm2, effectively preventing short circuits caused by sodium dendrite formation. When paired with a small amount of liquid electrolyte, the CSE applied in a sodium-ion half-cell with nickel-iron-manganese layered oxide cathode material achieved a discharge capacity of approximately 120 mAh/g @ 0.2 C. In a full-cell configuration, a discharge capacity of 112.6 mAh/g @ 0.2 C was realized, with stable Coulombic efficiency (~100%), demonstrating excellent electrochemical performance in pouch cells as well.
In summary, the CSE film developed in this study exhibits a wide electrochemical potential window (~5 V) and outstanding thermal stability at high temperatures (~250 °C). Its high ionic conductivity and transference number significantly contribute to the improved discharge capacity of SIBs. These findings highlight the promising application potential of CSE composite materials in the field of sodium-ion batteries.
關鍵字(中) ★ 鈉離子電池
★ 複合型固態電解質
★ 磷酸鈦鋁鈉
★ 醋酸纖維素
★ 全電池應用
★ 軟包電池應用
關鍵字(英) ★ Sodium-ion Battery
★ Composite Solid Electrolyte
★ NATP
★ Cellulose acetate
★ Application in Full Batteries
★ Application in Pouch Cell Batteries
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 序論 1
1-1 鈉離子電池應用及發展 1
1-2 研究動機 3
第二章 文獻回顧 6
2-1 鈉離子電池主要的內部元件 6
2-1-1 正極材料(Cathode) 7
2-1-2 負極材料(Anode) 12
2-1-3 液態電解質(Liquid Electrolyte,LE) 15
2-1-4 隔離膜(Separator) 17
2-2 固態電解質種類與發展 19
2-3 無機陶瓷電解質(ICEs) 20
2-3-1 β-氧化鋁(β-Al2O3) 21
2-3-2 硫化物(Sulfides) 21
2-3-3 鈉超離子導體(NASICON) 22
2-3-4 NASICON-NATP電解質的製備 24
2-3-5 NASICON電解質的發展與挑戰 27
2-4 高分子固態電解質(SPEs) 29
2-4-1聚偏二氟乙烯(Poly(vinylidene fluoride), PVDF) 30
2-4-2醋酸纖維素(Cellulose acetate, CA) 33
2-4-3高分子電解質的製備 34
2-5 複合型固態電解質(CSEs) 36
第三章 實驗方法 40
3-1 實驗架構 40
3-2 實驗藥品與儀器 42
3-2-1 實驗藥品 42
3-2-2 實驗儀器與用品 43
3-3 實驗步驟 44
3-3-1 Na1+xAlxTi2-x(PO4)3(NATP)固態電解質粉末製備 44
3-3-2 PVDF /Cellulose Acetate高分子固態電解質製備 45
3-3-3 複合型固態電解質薄膜製備 46
3-3-4 鈕扣型電池製備 47
3-3-5 軟包型電池製備 49
3-4 材料分析及電化學測量 49
3-4-1 X光繞射分析儀(X-ray Diffraction, XRD) 51
3-4-2動態光散射儀(Dynamic Light Scattering, DLS) 51
3-4-3高解析場發射掃描電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 52
3-4-4 熱重分析儀(Thermogravimetric Analysis, TGA) 53
3-4-5 差示掃描量熱計(Differential Scanning Calorimetry, DSC) 53
3-4-6 固態600MHz核磁共振光譜(Nuclear Magnetic Resonance, NMR) 54
3-4-7 電解液吸收(Electrolyte uptake) 54
3-4-8 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 54
3-4-9 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 55
3-4-10 穩態極化曲線(Charge and Discharge Test) 56
3-4-11 電池充放電測試(Charge and Discharge Test) 56
第四章 結果與討論 58
4-1 Na1+xAlxTi2-x(PO4)3 (NATP)材料分析 58
4-1-1 X光繞射分析 58
4-1-2粒徑分析 59
4-2 PVDF/CA/NaPF6高分子固態電解質(SPEs) 61
4-2-1表面形貌分析 61
4-2-2 熱重分析 65
4-2-4 電化學阻抗分析 67
4-3 PVDF/CA/NaPF6/NATP複合型固態電解質(CSEs) 71
4-3-1表面形貌分析 71
4-3-2 熱重分析 73
4-3-3 尺寸穩定性 75
4-3-4 差示掃描分析 77
4-3-5 電解液吸收測試 79
4-3-6 電化學阻抗分析 79
4-3-7 線性掃描伏安法 85
4-3-8 穩態極化曲線測試 86
4-3-9 鈉沉積和剝落分析(Plating/Stripping test) 89
4-3-10 鈕扣電池充放電測試 91
4-3-11 軟包電池充放電測試 96
4-3-12 離子傳輸機制變化 104
第五章 結論與未來展望 106
5-1 結論 106
5-1-1 PVDF/CA/NaPF6高分子固態電解質(SPEs) 106
5-1-2 PVDF/CA/NaPF6/NATP複合型固態電解質(CSEs) 107
5-2 未來展望 108
參考文獻 109
附錄 115
參考文獻 參考文獻
1. Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy & Environmental Science, 2010. 3(2): p. 174-189.
2. Palomares, V., et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5(3): p. 5884-5901.
3. Goikolea, E., et al., Na‐ion batteries—approaching old and new challenges. Advanced Energy Materials, 2020. 10(44): p. 2002055.
4. Yang, J., et al., Safety-enhanced polymer electrolytes for sodium batteries: recent progress and perspectives. ACS applied materials & interfaces, 2019. 11(19): p. 17109-17127.
5. Tapia-Ruiz, N., et al., 2021 roadmap for sodium-ion batteries. Journal of Physics: Energy, 2021. 3(3): p. 031503.
6. Hussain, M.M., et al., Big data analytics platforms for electric vehicle integration in transport oriented smart cities: Computing platforms for platforms for electric vehicle integration in smart cities, in Cyber warfare and terrorism: Concepts, methodologies, tools, and applications. 2020, IGI Global. p. 833-854.
7. Wang, Q., et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
8. FANG, Y.-J., et al., Recent developments in cathode materials for Na ion batteries. Acta Physico-Chimica Sinica, 2017. 33(1): p. 211-241.
9. Jia, S., et al., High-throughput design of Na–Fe–Mn–O cathodes for Na-ion batteries. Journal of Materials Chemistry A, 2022. 10(1): p. 251-265.
10. Delmas, C., C. Fouassier, and P. Hagenmuller, Structural classification and properties of the layered oxides. Physica B+ c, 1980. 99(1-4): p. 81-85.
11. Jian, Z., et al., Carbon coated Na3V2 (PO4) 3 as novel electrode material for sodium ion batteries. Electrochemistry Communications, 2012. 14(1): p. 86-89.
12. Avdeev, M., et al., Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries. Inorganic chemistry, 2013. 52(15): p. 8685-8693.
13. Qian, J., et al., Prussian blue cathode materials for sodium‐ion batteries and other ion batteries. Advanced Energy Materials, 2018. 8(17): p. 1702619.
14. Muñoz‐Márquez, M.Á., et al., Na‐ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Advanced Energy Materials, 2017. 7(20): p. 1700463.
15. Huang, S., et al., Biomass-derived carbon anodes for sodium-ion batteries. New Carbon Materials, 2023. 38(1): p. 40-66.
16. Kang, H., et al., Update on anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2015. 3(35): p. 17899-17913.
17. Tian, Z., et al., Electrolyte solvation structure design for sodium ion batteries. Advanced science, 2022. 9(22): p. 2201207.
18. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
19. Che, H., et al., Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives. Journal of Power Sources, 2018. 407: p. 173-179.
20. Che, H., et al., Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety. Green Energy & Environment, 2021. 6(2): p. 212-219.
21. Waqas, M., et al., Recent development in separators for high‐temperature lithium‐ion batteries. Small, 2019. 15(33): p. 1901689.
22. Arora, P. and Z. Zhang, Battery separators. Chemical reviews, 2004. 104(10): p. 4419-4462.
23. Fan, L., et al., Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Advanced Energy Materials, 2018. 8(11): p. 1702657.
24. Yang, H.-L., et al., Progress and challenges for all‐solid‐state sodium batteries. Advanced Energy and Sustainability Research, 2021. 2(2): p. 2000057.
25. Wang, Y., et al., Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 2019. 1(2): p. 91-100.
26. Wolf, M., J. Walker, and C. Catlow, Structural and transport properties of β ″-Al2O3. Solid State Ionics, 1984. 13(1): p. 33-38.
27. Hayashi, A., et al., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature communications, 2012. 3(1): p. 856.
28. Zhang, L., et al., Na 3 PSe 4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Advanced Energy Materials, 2015. 5(24).
29. Hong, H.-P., Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3− xO12. Materials Research Bulletin, 1976. 11(2): p. 173-182.
30. Goodenough, J.B., H.-P. Hong, and J. Kafalas, Fast Na+-ion transport in skeleton structures. Materials Research Bulletin, 1976. 11(2): p. 203-220.
31. Mouahid, F., et al., Crystal chemistry and ion conductivity of the Na1+ xTi2− xAlx (PO4) 3 (0≤ x≤ 0.9) NASICON series. Journal of Materials Chemistry, 2000. 10(12): p. 2748-2757.
32. Nieto-Munoz, A.M., J.F. Ortiz-Mosquera, and A.C. Rodrigues, The role of Al+ 3 on the microstructural and electrical properties of Na1+ xAlxTi2-x (PO4) 3 NASICON glass-ceramics. Journal of Alloys and Compounds, 2020. 820: p. 153148.
33. Jing, Y., et al., Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries. Energy Storage Science and Technology, 2020. 9(5): p. 1284.
34. Kazakevičius, E., et al., Characterization of NASICON-type Na solid electrolyte ceramics by impedance spectroscopy. Functional Materials Letters, 2014. 7(06): p. 1440002.
35. Lu, X., et al., The influence of phosphorous source on the properties of NASICON lithium-ion conductor Li1. 3Al0. 3Ti1. 7 (PO4) 3. Solid State Ionics, 2020. 354: p. 115417.
36. Zhou, W., et al., Rechargeable sodium all-solid-state battery. ACS central science, 2017. 3(1): p. 52-57.
37. He, S., et al., Unique rhombus-like precursor for synthesis of Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte with high ionic conductivity. Chemical engineering journal, 2018. 345: p. 483-491.
38. Gece, G., et al., Solvothermal Engineering of NaTi2 (PO4) 3 Nanomorphology for Applications in Aqueous Na-Ion Batteries. ACS Sustainable Chemistry & Engineering, 2023. 11(8): p. 3429-3436.
39. Fenton, D., Complex of alkali metal ions with poly (ethylene oxide). polymer, 1973. 14: p. 589.
40. Gebert, F., et al., Polymer electrolytes for sodium-ion batteries. Energy Storage Materials, 2021. 36: p. 10-30.
41. Li, Z., et al., Solid-state electrolytes for sodium metal batteries. Energy & Fuels, 2021. 35(11): p. 9063-9079.
42. Zhang, Y., et al., Electrospun porous poly (tetrafluoroethylene-co-hexafluoropropylene-co-vinylidene fluoride) membranes for membrane distillation. RSC advances, 2017. 7(89): p. 56183-56193.
43. Wu, Y., et al., Advances and prospects of PVDF based polymer electrolytes. Journal of Energy Chemistry, 2022. 64: p. 62-84.
44. Zhong, Y., et al., Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries. Journal of materials chemistry A, 2019. 7(42): p. 24251-24261.
45. Liang, X., et al., Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries. RSC advances, 2018. 8(71): p. 40498-40504.
46. Bristi, A.A., et al., Ionic Conductivity, Na Plating–Stripping, and Battery Performance of Solid Polymer Na Ion Electrolyte Based on Poly (vinylidene fluoride) and Poly (vinyl pyrrolidone). ACS Applied Energy Materials, 2022. 5(7): p. 8812-8822.
47. Asghar, M.R., et al. Lithium salt doped Poly (Vinylidene Fluoride)/cellulose acetate composite gel electrolyte membrane for lithium ion battery. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
48. Niu, W., et al., All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chemical Engineering Journal, 2020. 384: p. 123233.
49. Ma, Q., et al., Viscoelastic and nonflammable interface design–enabled dendrite‐free and safe solid lithium metal batteries. Advanced Energy Materials, 2019. 9(13): p. 1803854.
50. Zhang, Z., et al., A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016. 4(41): p. 15823-15828.
51. Li, S., et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science, 2020. 7(5): p. 1903088.
52. Bhattacharjee, S., DLS and zeta potential–what they are and what they are not? Journal of controlled release, 2016. 235: p. 337-351.
53. Rosenberg, Y., et al., The sol/gel contribution to the behavior of γ‐irradiated poly (vinylidene fluoride). Journal of applied polymer science, 1991. 43(3): p. 535-541.
54. Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987. 28(13): p. 2324-2328.
55. Wu, J., et al., Effect of Al doping on electrochemical performance of NaTi2 (PO4) 3/C anode for aqueous sodium ion battery. Journal of Applied Electrochemistry, 2022. 52(11): p. 1563-1572.
56. Careem, M.A., I.S.M. Noor, and A.K. Arof, Impedance spectroscopy in polymer electrolyte characterization. Polymer Electrolytes: Characterization Techniques and Energy Applications, 2020: p. 23-64.
57. B. Aziz, S., et al., The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers, 2020. 12(10): p. 2184.
58. Golodnitsky, D., et al., On order and disorder in polymer electrolytes. Journal of The Electrochemical Society, 2015. 162(14): p. A2551.
59. Wang, W., et al., Lithium ion conducting poly (ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. The Journal of Physical Chemistry C, 2017. 121(5): p. 2563-2573.
60. Yang, X., et al., The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Letters, 2023. 15(1): p. 74.
61. Mei, X., et al., A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Materials Today Communications, 2020. 24: p. 101004.
62. Liu, W., et al., Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters, 2015. 15(4): p. 2740-2745.
63. Meng, N., X. Zhu, and F. Lian, Particles in composite polymer electrolyte for solid-state lithium batteries: A review. Particuology, 2022. 60: p. 14-36.
64. Bag, S., et al., Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2 (PO4) 3 electrodes and polymer composite electrolyte. Journal of Power Sources, 2020. 454: p. 227954.
65. Aziz, S.B., et al., A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 2018. 3(1): p. 1-17.
66. Zhang, J., et al., Research progress of organic liquid electrolyte for sodium ion battery. Frontiers in Chemistry, 2023. 11.
67. Diederichsen, K.M., E.J. McShane, and B.D. McCloskey, Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Letters, 2017. 2(11): p. 2563-2575.
68. Yi, Q., et al., Durable sodium battery with a flexible Na3Zr2Si2PO12–PVDF–HFP composite electrolyte and sodium/carbon cloth anode. ACS Applied Materials & Interfaces, 2018. 10(41): p. 35039-35046.
69. Liu, B., et al., A novel porous gel polymer electrolyte based on poly (acrylonitrile–maleic anhydride) composite by polyhedral oligomeric silsesquioxane for lithium-ion batteries. Journal of Applied Electrochemistry, 2019. 49: p. 1167-1179.
70. Tikekar, M.D., L.A. Archer, and D.L. Koch, Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. Journal of The Electrochemical Society, 2014. 161(6): p. A847.
71. Liang, Y., et al., A superior composite gel polymer electrolyte of Li7La3Zr2O12-poly (vinylidene fluoride-hexafluoropropylene)(PVDF-HFP) for rechargeable solid-state lithium ion batteries. Materials Research Bulletin, 2018. 102: p. 412-417.
72. Yang, H., et al., ′Environment-friendly′polymer solid electrolyte membrane via a rapid surface-initiating polymeration strategy. Chemical Engineering Journal, 2021. 421: p. 129710.
73. Wen-Zhuo, C., et al., Mechanism, strategies, and characterizations of Li plating in solid state batteries. ACTA PHYSICA SINICA, 2020. 69(22).
74. Cheng, M., et al., A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. Nanotechnology, 2020. 31(42): p. 425401.
75. Son, Y., et al., Analysis of Differences in Electrochemical Performance Between Coin and Pouch Cells for Lithium‐Ion Battery Applications. Energy & Environmental Materials, 2023: p. e12615.
76. Zhang, Z., et al., Na3. 4Zr1. 8Mg0. 2Si2PO12 filled poly (ethylene oxide)/Na (CF3SO2) 2N as flexible composite polymer electrolyte for solid-state sodium batteries. Journal of Power Sources, 2017. 372: p. 270-275.
77. Singh, M.D., A. Dalvi, and D. Phase, Novel Na3Zr2Si2PO12–polymer hybrid composites with high ionic conductivity for solid-state ionic devices. Materials Letters, 2020. 262: p. 127022.
78. Zheng, J. and Y.-Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes. ACS applied materials & interfaces, 2018. 10(4): p. 4113-4120.
79. Fu, J., et al., Ion transport in composite polymer electrolytes. Materials Advances, 2022. 3(9): p. 3809-3819.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明