參考文獻 |
[1] R. Newell, Y. Qian and D. Raimi, Global energy outlook 2015, IEA. 2016.
[2] N. S. Lewis and D. G. Nocera, Powering the planet:Chemical challenges in solar energy utilization, Proc Natl Acad Sci USA. 2006, 103, 15729–15735.
[3] A. Feltrin and A. Freundlich, Material considerations for terawatt level deployment of photovoltaics, Renew. Energy. 2008, 33, 180–185.
[4] Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells, Nature 2023, 613, 60–65.
[5] A. Mishra and P. Bauerle, Small molecule organic semiconductors on the move: promises for future solar energy technology, Angew. Chem. Int. Ed. 2012, 51, 2020–2067.
[6] D. Kumar, D. K. Dheer and L. Kumar, Effect of different operating conditions on the conversion efficiency of triple-junction solar cell, Mater. Res. Express 2021, 8, 035902.
[7] M. Z. Iqbal and S. Khan, Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes, Solar Energy 2018, 160, 130–152.
[8] J. Cubas, S. Pindado and C. De Manuel, Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the lambert W-function, Energies, 2014, 7, 4098–4115.
[9] S. W. Rhee and W. Kwon, Key technological elements in dye-sensitized solar cells (DSC), Korean J Chem Eng. 2011, 28, 1481–1494.
[10] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 2003, 4, 145–153.
[11] S. E. Clapham, A. Hadzovic and R. H. Morris, Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes, Coord. Chem. Rev. 2004, 248, 2201–2237.
[12] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Mater. Sci. Eng. R. 2009, 63, 81–99.
[13] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells, Nature 2005, 4, 455–459
[14] K. Park, Q. Zhang, D. Myers and G. Cao, Charge transport properties in TiO2 network with different particle sizes for dye sensitized solar cells, ACS Appl. Mater. Interfaces 2013, 5, 1044–1052.
[15] L. Song, Y. Zhou, Y. Guan, P. Du, J. Xiong and F. Ko, Branched open-ended TiO2 nanotubes for improved efficiency of flexible dye-sensitized solar cells, J. Alloys Compd. 2017, 724, 1124–1133.
[16] J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, Recombination and transport processes in dye-sensitized solar cells investigated under working conditions, J. Phys. Chem. B 2006, 110, 22950–22951.
[17] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films 2008, 516, 4613–4619.
[18] X. Miao, K. Pan, Y. Liao, W. Zhou, Q. Pan and G. Wang, Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency, J. Mater. Chem. A 2013, 1, 9860–9861.
[19] X. Wu, G. Q. Lu and L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application, Energy Environ Sci. 2011, 4, 3565–3570.
[20] D. Chen, F. Huang, Y. B. Cheng and R. A. Caruso, Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells, Adv. Mater. 2009, 21, 2206–2210.
[21] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm), J. Am. Chem. Soc. 2010, 132, 4438–4444.
[22] G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew and H. Takakura, Reporting solar cell efficiencies in solar energy materials and solar cells, Sol. Energ. Mat. Sol. Cells 2008, 92, 371–373.
[23] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X-2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382–6390.
[24] A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 2002, 95, 49–68.
[25] M. K. Nazeeruddin, R. H. Baker, P. Liska and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B 2003, 707, 8981–8987
[26] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 727, 16835–16847.
[27] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 2009, 42, 1788–1798.
[28] T. Kinoshita, J. Fujisawa, J. Nakazaki, S. Uchida, T. Kubo and H. Segawa, Enhancement of near-IR photoelectric conversion in dye-sensitized solar cells using an osmium sensitizer with strong spin-forbidden transition, J. Phys. Chem. Lett. 2012, 3, 394–398.
[29] R. Juwita, J. Y. Lin, S. J. Lin, Y. C. Liu, T. Y. Wu, Y. M. Feng, C. Y. Chen, H. H. Gavin Tsai and C. G. Wu, Osmium sensitizer with enhanced spin-orbit coupling for panchromatic dye-sensitized solar cells, J. Mater. Chem. A 2020, 8, 12361–12369.
[30] B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737–739.
[31] J. Cong, X. Yang, L. Kloob and L. Sun, Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized, Energy Environ. Sci. 2012, 5, 9180–9194.
[32] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band, ACS Appl. Mater. Interfaces 2013, 5, 444–450.
[33] Y. Shi, Y. Wang, M. Zhang and X. Dong, Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium, Phys. Chem. Chem. Phys. 2011, 13, 14590–14597.
[34] Y. Liu, A. Hagfeldt, X. R. Xiao and S. E. Lindquist, Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Sol. Energy Mater. Sol. Cells 1998, 55, 267–281.
[35] K. M. Son, M. G. Kang, R. Vittal, J. Lee and K. J. Kim, Effects of substituents of imidazolium cations on the performance of dye-sensitized TiO2 solar cells, J. Appl. Electrochem. 2008, 38, 1647–1652.
[36] M. Bidikoudi, L. F. Zubeir and P. Falaras, Low viscosity highly conductive ionic liquid blends for redox active electrolytes in efficient dye-sensitized solar cells, J. Mater. Chem. A 2014, 2, 15326–15336.
[37] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1):The case of solar cells using the I-/I3- redox couple, J. Phys. Chem. B 2005, 109, 3480–3487.
[38] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability, J. Phys. Chem. C 2009, 113, 21779–21783.
[39] N. Kopidakis, N. R. Neale and A. J. Frank, Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation, J. Phys. Chem. B 2006, 110, 12485–12489.
[40] J. Zhang and A. Zaban, Efficiency enhancement in dye-sensitized solar cells by in situ passivation of the sensitized nanoporous electrode with Li2CO3, Electrochim. Acta 2008, 53, 5670–5674.
[41] A. Kay and M. Grätzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem. A 2002, 97, 6272–6277.
[42] J. Li, W. Wu, J. Yang, J. Tang, Y. Long and J. Hua, Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance, Sci. China Chem. 2011, 54, 699–706.
[43] X. Li, H. Lin, S. M. Zakeeruddin, M. Grätzel and J. Li, Interface modification of dye-sensitized solar cells with pivalic acid to enhance the open-circuit voltage, Chem. Lett. 2009, 38, 322–323.
[44] P. Wang, S. M. Zakeeruddin, R. Humphry‐Baker, J. E. Moser and M. Grätzel, Molecular‐scale interface engineering of TiO2 nanocrystals: Improve the efficiency and stability of dye‐sensitized solar cells, J. Adv. Mater. 2003, 15, 2101–2104.
[45] Y. Liu, J. R. Jennings, X. Wang and Q. Wang, Significant performance improvement in dye-sensitized solar cells employing cobalt(III/II) tris-bipyridyl redox mediators by co-grafting alkyl phosphonic acids with a ruthenium sensitizer, Phys. Chem. Chem. Phys. 2013, 15, 6170–6174.
[46] N. R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel and A. J. Frank, Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement, J. Phys. Chem. B 2005, 109, 23183–23189.
[47] S. H. Aung, Y. Hao, T. Z. Oo and G. Boschloo, 2‑(4 Butoxyphenyl)‑N‑hydroxyacetamide: An efficient preadsorber for dye-sensitized solar cells, ACS Omega 2017, 2, 1820–1825.
[48] K. Kakiage, Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno and M. Hanaya, An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell, Chem. Commun. 2014, 50, 6379–6381.
[49] M. Unno, K. Kakiage, M. Yamamura, T. Kogure, T. Kyomen and M. Hanaya, Silanol dyes for solar cells: Higher efficiency and significant durability, Appl. Organomet. Chem. 2010, 24, 247–250.
[50] S. Carli, L. Casarin, S. Caramori, R. Boaretto, E. Busatto, R. Argazzi and C. A. Bignozzi, A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells, Polyhedron 2014, 82, 173–180.
[51] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta. 2001, 46, 3457–3466.
[52] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett. 2007, 7, 69–74.
[53] N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 2003, 107, 11307–11315.
[54] P. R. F. Barnes, A. Y. Anderson, M. Juozapavicius, L. Liu, X. Li, E. Palomares, A. Forneli and B. C. O′Regan, Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells, Phys. Chem. Chem. Phys. 2011, 13, 3547–3558.
[55] A. Tricoli, A. S. Wallerand and M. Righettoni, Highly porous TiO2 films for dye sensitized solar cells, J. Mater. Chem. 2012, 22, 14254–14261.
[56] 吳宗祐,釕錯合物敏化太陽能電池元件優化與光伏特性探討,國立中央大學化學研究所碩士學位論文,2018。
[57] C. Y. Chen, T. Y. Lin, C. F. Chiu, M. M. Lee, W. L. Li, M. Y. Chen, T. H. Hung, Z. J. Zhang, H. G. Tsai, S. S. Sun and C. G. Wu, Steric effects on the photovoltaic performance of panchromatic ruthenium sensitizers for dye-sensitized solar cells, ACS Appl. Mater. Interfaces 2024, 16, 12647–12660.
[58] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells, J. Am. Chem. Soc. 2011, 133, 9304–9310.
[59] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energ. Mat. Sol. Cells 2000, 64, 115–134.
[60] K. Hara, Y. Danoh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama and H. Arakawa, Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells, Langmuir 2004, 20, 4205–4210.
[61] Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen and X. Z. Zhao, Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell, J. Phys. Chem. B 2008, 112, 6594–6602.
[62] D. Kuang, C. Klein, H. J. Snaith, J. E. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: Influence of lithium ions on the photovoltaic performance of liquid and solid-state cells, Nano Lett. 2006, 6, 769–773.
[63] X. Ren, Q. Feng, G. Zhou, C. H. Huang and Z. S. Wang, Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 7190–7195.
[64] Z. Sun, R. K. Zhang, H. H. Xie, H. Wang, M. Liang and S. Xue, Nonideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped poly(ethylene oxide) electrolytes, J. Phys. Chem. C 2013, 117, 4364–4373.
[65] S. Yanagida, Y. Yu and K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Acc. Chem. Res. 2009, 42, 1827–1838.
[66] L. M. Peter, Dye-sensitized nanocrystalline solar cells, Phys. Chem. Chem. Phys. 2007, 9, 2630–2642.
[67] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, Investigation of iodine concentration effects in electrolytes for dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 10612–10620.
[68] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson and E. M. J. Johansson, Experimental and theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells, ACS Appl. Mater. Interfaces 2018, 10, 11572–11579.
[69] G. Boschloo, L. Haggman and A. Hagfeldt, Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells, J. Phys. Chem. B 2006, 110, 13144–13150.
[70] T. D. Nguyen, Y. P. Lan and C. G. Wu, The function of chalcogenophene in the cyclomatelated ring of the cycloruthenated dyes applied in dye-sensitized solar cell, Inorg. Chem. 2021, 60, 11328–11337.
[71] J. J. Kim, H. Choi, C. Kim, M. S. Kang, H. S. Kang and J. Ko, Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2′-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells, Chem. Mater. 2009, 21, 5719–5726.
[72] 蔡源寧,含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池,國立中央大學化學研究所碩士學位論文,2023。
[73] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B 1997, 101, 10281–10289.
[74] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy, J. Phys. Chem. B 2003, 107, 7536–7539.
[75] G. Schlichthörl, N. G. Park and A. J. Frank, Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 1999, 103, 782–791.
[76] S. K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K. C. Gödel, Y. Vaynzof, A. Santhala, S. I. Watanabe, D. J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H. J. Snaith and U. Steiner, Performance and stability enhancement of dye‐sensitized and perovskite solar cells by al doping of TiO2, Adv. Funct. Mater. 2014, 24, 6046–6055.
[77] J. Bisquert, A. Zaban and P. Salvador, Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states, J. Phys. Chem. B 2002, 106, 8774–8782.
[78] 林庭毅,金屬錯合物染料敏化太陽能電池的元件優化,國立中央大學化學研究所碩士學位論文,2021。
[79] B. C. O′Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. Klein and J. R. Durrant, Structure/function relationships in dyes for solar energy conversion:A two-atom change in dye structure and the mechanism for its effect on cell voltage, J. Am. Chem. Soc. 2009, 131, 3541–3548.
[80] H. An, D. Song, J. Lee, E. M. Kang, J. Jaworski, J. M. Kim and Y. S. Kang, Promotion of strongly anchored dyes on the surface of titania by tetraethyl orthosilicate treatment for enhanced solar cell performance, J. Mater. Chem. A 2014, 2, 2250–2255.
[81] J. Spivack, O. Siclovan, S. Gasaway, E. Williams, A. Yakimov and J. Gui, Improved efficiency of dye sensitized solar cells by treatment of the dyed titania electrode with alkyl(trialkoxy)silanes, Sol. Energ. Mat. Sol. Cells 2006, 90, 1296–1307.
[82] 陳世昀,有機共吸附染料的合成與性質探討,國立中央大學化學研究所碩士學位論文,2020。
[83] 黃品嘉,新型三吡啶鋨錯合物染料合成與配位基效應之探討,國立中央大學化學研究所碩士學位論文,2022。
[84] S. Fantacci, M. G. Lobello and F. De Angelis, Everything you always wanted to know about black dye (but were afraid to ask):A DFT/TDDFT investigation, Chimia 2013, 67, 121–128.
[85] M. K. Nazeeruddin, S. M. Zakeeruddin and K. Kalyanasundaram, Enhanced intensities of the ligand-to-metal charge-transfer transitions in ruthenium (III) and osmium (III) complexes of substituted bipyridines, J. Phys. Chem. 2002, 97, 9607–9612.
[86] W. B. Swords, G. Li and G. J. Meyer, Iodide ion pairing with highly charged ruthenium polypyridyl cations in CH3CN, Inorg. Chem. 2015, 54, 4512–4519. |