參考文獻 |
1. Yamaguchi, M. and H. Yoshida, Drosophila as a Model Organism. Adv Exp Med Biol, 2018. 1076: p. 1-10.
2. Kennison, J.A. and J.W. Tamkun, Early Drosophila development. Curr Opin Cell Biol, 1990. 2(6): p. 991-5.
3. Tadros, W. and H.D. Lipshitz, The maternal-to-zygotic transition: a play in two acts. Development, 2009. 136(18): p. 3033-42.
4. Vastenhouw, N.L., W.X. Cao, and H.D. Lipshitz, The maternal-to-zygotic transition revisited. Development, 2019. 146(11).
5. Lee, M.T., A.R. Bonneau, and A.J. Giraldez, Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol, 2014. 30: p. 581-613.
6. Hamm, D.C. and M.M. Harrison, Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol, 2018. 8(12): p. 180183.
7. Pilot, F., et al., Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development, 2006. 133(4): p. 711-23.
8. De Renzis, S., et al., Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol, 2007. 5(5): p. e117.
9. Lott, S.E., et al., Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq. PLoS Biol, 2011. 9(2): p. e1000590.
10. Chen, K., et al., A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife, 2013. 2: p. e00861.
11. Saunders, A., et al., Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev, 2013. 27(10): p. 1146-58.
12. Kwasnieski, J.C., T.L. Orr-Weaver, and D.P. Bartel, Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns. Genome Res, 2019. 29(7): p. 1188-1197.
13. ten Bosch, J.R., J.A. Benavides, and T.W. Cline, The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development, 2006. 133(10): p. 1967-77.
14. Liang, H.L., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature, 2008. 456(7220): p. 400-3.
15. Nien, C.Y., et al., Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet, 2011. 7(10): p. e1002339.
16. Harrison, M.M., et al., Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet, 2011. 7(10): p. e1002266.
17. Lee, M.T., et al., Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013. 503(7476): p. 360-4.
18. Leichsenring, M., et al., Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science, 2013. 341(6149): p. 1005-9.
19. Loh, Y.H., et al., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006. 38(4): p. 431-40.
20. mod, E.C., et al., Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 2010. 330(6012): p. 1787-97.
21. Foo, S.M., et al., Zelda potentiates morphogen activity by increasing chromatin accessibility. Curr Biol, 2014. 24(12): p. 1341-1346.
22. Sun, Y., et al., Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res, 2015. 25(11): p. 1703-14.
23. Hamm, D.C., E.R. Bondra, and M.M. Harrison, Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain. J Biol Chem, 2015. 290(6): p. 3508-18.
24. Dubochet, J., J. Frank, and R. Henderson, The nobel prize in Chemistry 2017. Chimica Oggi-Chemistry Today, 2018. 36(3): p. 28-29.
25. Cheng, Y., et al., A primer to single-particle cryo-electron microscopy. Cell, 2015. 161(3): p. 438-449.
26. Earl, L.A., et al., Cryo-EM: beyond the microscope. Curr Opin Struct Biol, 2017. 46: p. 71-78.
27. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589.
28. Varadi, M., et al., AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 2022. 50(D1): p. D439-D444.
29. Laver, J.D., et al., Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity. Nucleic Acids Res, 2013. 41(20): p. 9438-60.
30. Carnesecchi, J., et al., Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun, 2020. 11(1): p. 1388.
31. Rives-Quinto, N., et al., Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes. Elife, 2020. 9.
32. Larson, E.D., et al., Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun, 2021. 12(1): p. 7153.
33. Rieder, L.E., et al., Histone locus regulation by the Drosophila dosage compensation adaptor protein CLAMP. Genes Dev, 2017. 31(14): p. 1494-1508.
34. Duan, J., et al., CLAMP and Zelda function together to promote Drosophila zygotic genome activation. Elife, 2021. 10.
35. Reichardt, I., et al., The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep, 2018. 19(1): p. 102-117.
36. Larson, E.D., et al., Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. G3 (Bethesda), 2022. 12(9).
37. Jenkins, V.K., et al., Using FlyBase: A Database of Drosophila Genes and Genetics. Methods Mol Biol, 2022. 2540: p. 1-34.
38. Schafer, M., et al., Expression of a gene duplication encoding conserved sperm tail proteins is translationally regulated in Drosophila melanogaster. Mol Cell Biol, 1993. 13(3): p. 1708-18.
39. Ni, J.Q., et al., Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods, 2008. 5(1): p. 49-51.
40. Morikawa, R.K., et al., Different levels of the Tripartite motif protein, Anomalies in sensory axon patterning (Asap), regulate distinct axonal projections of Drosophila sensory neurons. Proc Natl Acad Sci U S A, 2011. 108(48): p. 19389-94.
41. Comeron, J.M., R. Ratnappan, and S. Bailin, The many landscapes of recombination in Drosophila melanogaster. PLoS Genet, 2012. 8(10): p. e1002905.
42. Emelyanov, A.V., et al., Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization. Genes Dev, 2014. 28(18): p. 2027-40.
43. Ando, T., et al., Nanopore Formation in the Cuticle of an Insect Olfactory Sensillum. Curr Biol, 2019. 29(9): p. 1512-1520 e6.
44. Shokri, L., et al., A Comprehensive Drosophila melanogaster Transcription Factor Interactome. Cell Rep, 2019. 27(3): p. 955-970 e7.
45. Kanca, O., et al., An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. Elife, 2022. 11.
46. David, J.R., et al., Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol Evol, 2022. 12(4): p. e8821.
47. Tjia, S.T., G.M. zu Altenschildesche, and W. Doerfler, Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells. Virology, 1983. 125(1): p. 107-17.
48. Pennock, G.D., C. Shoemaker, and L.K. Miller, Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector. Mol Cell Biol, 1984. 4(3): p. 399-406.
49. Lee, D.F., et al., A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol, 2000. 74(24): p. 11873-80.
50. Kang, C.C., Construction and ectopic expression of Drosophila Zelda using baculovirus system for functional analysis, in The Department of Life Sciences. 2022, National Central University.
51. Huang, Y.T., Construction of Drosophila Zelda using baculovirus system and screening for proteins interacting with Zelda, in The Department of Life Sciences. 2022, National Central University.
52. Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula. World J Virol, 2016. 5(2): p. 85-6.
53. ATCC Virology Culture Guide. Available from: https://www.atcc.org/resources/culture-guides/virology-culture-guide.
54. Racaniello, V. Multiplicity of infection. 2011; Available from: https://virology.ws/2011/01/13/multiplicity-of-infection/.
55. Huang, P.H., Anti-Zelda antibody production and Zelda expression analysis, in The Department of Life Sciences. 2023, National Central University.
56. Bonnet, J., et al., Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Dev Cell, 2019. 51(5): p. 632-644 e6.
57. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504.
58. Rhee, D.Y., et al., Transcription factor networks in Drosophila melanogaster. Cell Rep, 2014. 8(6): p. 2031-2043. |