參考文獻 |
Bernier, N. B., & Thompson, K. R. (2007). Tide-surge interaction off the east coast of Canada and northeastern United States. Journal of Geophysical Research: Oceans, 112(C6). https://doi.org/https://doi.org/10.1029/2006JC003793
〔2〕 Blumberg, A. F., & Mellor, G. L. (1987). A description of a three‐dimensional coastal ocean circulation model. Three‐dimensional coastal ocean models, 4, 1-16.
〔3〕 Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third‐generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666.
〔4〕 Chang, C.-H., Shih, H.-J., Chen, W.-B., Su, W.-R., Lin, L.-Y., Yu, Y.-C., & Jang, J.-H. (2018). Hazard assessment of typhoon-driven storm waves in the nearshore waters of Taiwan. Water, 10(7), 926.
〔5〕 Chant, R. J., Sommerfield, C. K., & Talke, S. A. (2018). Impact of channel deepening on tidal and gravitational circulation in a highly engineered estuarine basin. Estuaries and Coasts, 41, 1587-1600.
〔6〕 Chaumillon, E., Bertin, X., Fortunato, A. B., Bajo, M., Schneider, J.-L., Dezileau, L., Walsh, J. P., Michelot, A., Chauveau, E., & Créach, A. (2017). Storm-induced marine flooding: Lessons from a multidisciplinary approach. Earth-Science Reviews, 165, 151-184.
〔7〕 Chen, W.-B., Lin, L.-Y., Jang, J.-H., & Chang, C.-H. (2017). Simulation of typhoon-induced storm tides and wind waves for the northeastern coast of Taiwan using a tide–surge–wave coupled model. Water, 9(7), 549.
〔8〕 Chen, W.-B., Liu, W.-C., & Wu, C.-Y. (2013). Coupling of a one-dimensional river routing model and a three-dimensional ocean model to predict overbank flows in a complex river–ocean system. Applied Mathematical Modelling, 37(9), 6163-6176.
〔9〕 Cheng, Y., & Andersen, O. B. (2011). Multimission empirical ocean tide modeling for shallow waters and polar seas. Journal of Geophysical Research: Oceans, 116(C11).
〔10〕 Chiou, M.-D., Chien, H., Centurioni, L. R., & Kao, C.-C. (2010). On the Simulation of Shallow Water Tides in the Vicinity of the Taiwan Banks. Terrestrial, Atmospheric & Oceanic Sciences, 21(1).
〔11〕 Chunpeng, W., & Tao, L. (2015). Numerical study on the effect of breakwater construction on tidal flow and sediment. 2015 Sixth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA),
〔12〕 Codiga, D. L. (2011). Unified tidal analysis and prediction using the UTide Matlab functions.
〔13〕 Dean, R. G., & Dalrymple, R. A. (2004). Coastal processes with engineering applications. Cambridge University Press.
〔14〕 DHI. (1994). User guide and reference manual of MIKE 21-coastal hydraulics and oceanography hydrodynamic module. Danish Hydraulic Institute.
〔15〕 DHI. (2014). MIKE 21 Flow Model FM Hydrodynamic Module, User Manual. Hydrodynamic Module Scientific Documentation.
〔16〕 Doodson, A. T. (1921). The harmonic development of the tide-generating potential. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 100(704), 305-329.
〔17〕 Dushaw, B. D., Egbert, G. D., Worcester, P. F., Cornuelle, B. D., Howe, B. M., & Metzger, K. (1997). A TOPEX/POSEIDON global tidal model (TPXO. 2) and barotropic tidal currents determined from long-range acoustic transmissions. Progress in Oceanography, 40(1-4), 337-367.
〔18〕 Egbert, G. D., Bennett, A. F., & Foreman, M. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12), 24821-24852.
〔19〕 Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183-204.
〔20〕 Einšpigel, D., & Martinec, Z. (2017). Time-domain modeling of global ocean tides generated by the full lunisolar potential. Ocean Dynamics, 67(2), 165-189.
〔21〕 Familkhalili, R., & Talke, S. A. (2016). The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC. Geophysical Research Letters, 43(17), 9138-9147.
〔22〕 Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides, 35, 130.
〔23〕 Haigh, I. D., Pickering, M. D., Green, J. M., Arbic, B. K., Arns, A., Dangendorf, S., Hill, D. F., Horsburgh, K., Howard, T., & Idier, D. (2020). The tides they are a‐Changin′: A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms, and future implications. Reviews of Geophysics, 58(1), e2018RG000636.
〔24〕 Haigh, I. D., Wadey, M. P., Wahl, T., Ozsoy, O., Nicholls, R. J., Brown, J. M., Horsburgh, K., & Gouldby, B. (2016). Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Scientific data, 3(1), 1-14.
〔25〕 Hill, D., Griffiths, S., Peltier, W., Horton, B., & Törnqvist, T. (2011). High‐resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. Journal of Geophysical Research: Oceans, 116(C10).
〔26〕 Holleman, R. C., & Stacey, M. T. (2014). Coupling of sea level rise, tidal amplification, and inundation. Journal of physical oceanography, 44(5), 1439-1455.
〔27〕 Horsburgh, K., & Wilson, C. (2007). Tide‐surge interaction and its role in the distribution of surge residuals in the North Sea. Journal of Geophysical Research: Oceans, 112(C8).
〔28〕 Hsiao, L.-F., Chen, D.-S., Kuo, Y.-H., Guo, Y.-R., Yeh, T.-C., Hong, J.-S., Fong, C.-T., & Lee, C.-S. (2012). Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Weather and Forecasting, 27(5), 1249-1263.
〔29〕 Hsieh, T.-C., Ding, Y., Yeh, K.-C., & Jhong, R.-K. (2020). Investigation of morphological changes in the tamsui river estuary using an integrated coastal and estuarine processes model. Water, 12(4), 1084.
〔30〕 Idier, D., Dumas, F., & Muller, H. (2012). Tide-surge interaction in the English Channel. Natural Hazards and Earth System Sciences, 12(12), 3709-3718.
〔31〕 Jay, D. A., Leffler, K., & Degens, S. (2011). Long-Term Evolution of Columbia River Tides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(4), 182-191. https://doi.org/doi:10.1061/(ASCE)WW.1943-5460.0000082
〔32〕 Jelesnianski, C. P. (1965). A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Monthly Weather Review, 93(6), 343-358.
〔33〕 Kamphuis, J. W. (2000). Introduction to Coastal Engineering and Management. In: World Scientific.
〔34〕 Korotenko, K., Osadchiev, A., Zavialov, P., Kao, R.-C., & Ding, C.-F. (2014). Effects of bottom topography on dynamics of river discharges in tidal regions: case study of twin plumes in Taiwan Strait. Ocean Science, 10(5), 863-879.
〔35〕 Korotenko, K. A., Zavialov, P. O., Chen, Y.-Y., & Lee, H. H. (2020). A study of circulation, turbulence, and tidal stream resources in the Taiwan Strait. Frontiers in Marine Science, 7, 368.
〔36〕 Lazure, P., & Dumas, F. (2008). An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Advances in water resources, 31(2), 233-250.
〔37〕 Luettich, R. A., Westerink, J. J., & Scheffner, N. W. (1992). ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1, Theory and methodology of ADCIRC-2DD1 and ADCIRC-3DL.
〔38〕 Luyten, P. J., Jones, J. E., Proctor, R., Tabor, A., Tett, P., & Wild-Allen, K. (1999). COHERENS–A coupled hydrodynamical-ecological model for regional and shelf seas: user documentation. MUMM Report, Management Unit of the Mathematical Models of the North Sea, 914.
〔39〕 Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56, 394-415.
〔40〕 Matsumoto, D., LeRoux, J., Wilson-Cohn, C., Raroque, J., Kooken, K., Ekman, P., Yrizarry, N., Loewinger, S., Uchida, H., & Yee, A. (2000). A new test to measure emotion recognition ability: Matsumoto and Ekman′s Japanese and Caucasian Brief Affect Recognition Test (JACBART). Journal of Nonverbal behavior, 24, 179-209.
〔41〕 Mellor, G. L. (1998). Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ.
〔42〕 Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937.
〔43〕 Pugh, D. T. (1987). Tides, surges and mean sea level. John Wiley and Sons Inc.,New York, NY. https://www.osti.gov/biblio/5061261
〔44〕 Ray, R. D. (1999). A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2. National Aeronautics and Space Administration, Goddard Space Flight Center.
〔45〕 Rodríguez-Padilla, I., & Ortiz, M. (2017). On the secular changes in the tidal constituents in San Francisco Bay. Journal of Geophysical Research: Oceans, 122(9), 7395-7406. https://doi.org/https://doi.org/10.1002/2016JC011770
〔46〕 Savcenko, R., & Bosch, W. (2012). EOT11a-empirical ocean tide model from multi-mission satellite altimetry. DGFI Report No. 89.
〔47〕 Schindelegger, M., Green, J., Wilmes, S. B., & Haigh, I. D. (2018). Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123(7), 4593-4609.
〔48〕 Schrama, E., & Ray, R. (1994). A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12), 24799-24808.
〔49〕 Sheng, Y. P., Paramygin, V. A., Terng, C.-T., & Chi-Hao, C. (2016). Simulating storm surge and inundation along the Taiwan coast during typhoons Fanapi in 2010 and Soulik in 2013. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 27(6), 9.
〔50〕 Stammer, D., Ray, R., Andersen, O. B., Arbic, B., Bosch, W., Carrère, L., Cheng, Y., Chinn, D., Dushaw, B., & Egbert, G. (2014). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3), 243-282.
〔51〕 Tu, Z., Gao, X., Xu, J., Sun, W., Sun, Y., & Su, D. (2021). A novel method for regional short-term forecasting of water level. Water, 13(6), 820.
〔52〕 Vellinga, N., Hoitink, A., van der Vegt, M., Zhang, W., & Hoekstra, P. (2014). Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine–Meuse delta. Coastal engineering, 90, 40-50.
〔53〕 Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013). Coastal flooding by tropical cyclones and sea-level rise. Nature, 504(7478), 44-52.
〔54〕 Wu, D., Fang, G., Cui, X., & Teng, F. (2018). An analytical study of M 2 tidal waves in the Taiwan Strait using an extended Taylor method. Ocean Science, 14(1), 117-126.
〔55〕 Wu, T.-R., Tsai, Y.-L., & Terng, C.-T. (2017). The recent development of storm surge modeling in Taiwan. Procedia IUTAM, 25, 70-73.
〔56〕 Yu, Y.-C., Chen, H., Shih, H.-J., Chang, C.-H., Hsiao, S.-C., Chen, W.-B., Chen, Y.-M., Su, W.-R., & Lin, L.-Y. (2019). Assessing the potential highest storm tide hazard in Taiwan based on 40-year historical typhoon surge hindcasting. Atmosphere, 10(6), 346.
〔57〕 Zhang, W.-Z., Hong, H.-S., Shang, S.-P., Chen, D.-W., & Chai, F. (2007). A two-way nested coupled tide-surge model for the Taiwan Strait. Continental Shelf Research, 27(10-11), 1548-1567.
〔58〕 Zhang, W. Z., Shi, F., Hong, H. S., Shang, S. P., & Kirby, J. T. (2010). Tide‐surge interaction intensified by the Taiwan Strait. Journal of Geophysical Research: Oceans, 115(C6).
〔59〕 Zhong, L., & Li, M. (2006). Tidal energy fluxes and dissipation in the Chesapeake Bay. Continental Shelf Research, 26(6), 752-770.
〔60〕 Zu, T., Gan, J., & Erofeeva, S. Y. (2008). Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(2), 137-154.
〔61〕 吳祚任, 林君蔚, 莊淑君, 楊天瑋, 許家均, & 曾博森. (2021). 臺灣暴潮預報溢淹模式精準度量化研究(1/3).
〔62〕 李兆芳, 劉正琪, 邱永芳, 蘇青和, 陳明宗, 李俊穎, 高政宏, & 林莉凰. (2011). 近岸海象數值模擬及預警系統之建立(4/4)-水動力部份.
〔63〕 李汴軍, 范揚洺, 董東璟, & 高家俊. (2005). 台灣海域潮汐空間均勻特性之研究. 海洋工程學刊, 67-83.
〔64〕 林演斌, 陳聖學, 施孟憲, 滕春慈, & 林燕璋. (2020). 港內外潮位差異分析. 109年天氣分析與預報研討會, A5-O-N07.
〔65〕 林演斌, 陳聖學, 滕春慈, & 林燕璋. (2019). 港內外潮位差異分析. 108年天氣分析與預報研討會, A7-14.
〔66〕 林豐福, 洪憲忠, 廖建明, 林達遠, & 許泰文. (2004). 臺北港海域運輸安全之探討(II)—臺北港海域潮流流場數值模擬分析.
〔67〕 張憲國, 莊文傑, & 曾相茂. (2013). 臺灣商港的主要天文潮汐與潮流的特性比較. 海洋工程學刊, 13(4), 393-410.
〔68〕 莊文傑, & 江中權. (2002). 台灣四周海域海流數值模擬研究(二)-高雄港海域潮汐與潮流之數值模擬研究.
〔69〕 詹森. (2006). 東亞海域之潮汐:1/12°三維斜壓潮汐模式之數值模擬. 天氣分析與預報研討會論文彙編, 7-27〜27-32.
〔70〕 蕭力榮. (2017). 臺灣本島與離島潮位分析及深度基準探討. 交通大學土木工程系所學位論文, 2017, 1-83. |