博碩士論文 110821010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.222.161.95
姓名 許芯恩(Hsin-En Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 異位表達 Zelda 對 S2 細胞染色質景觀重塑的影響
(The effect of ectopically expressing Zelda on remodeling chromatin landscape in S2 cells)
相關論文
★ 使用果蠅作為模型來研究不同脂肪來源的高脂肪飲食的影響和潛在的抗肥胖療法★ 研究雙特松對HepG2細胞之DNA修復的影響
★ 利用人類腎臟近曲小管表皮細胞建立三維細胞培養模型★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析
★ 以桿狀病毒載體系統 建構與異源表達果蠅Zelda基因及其功能分析★ 測試以異位表達 Zelda 之 S2 細胞為平台進行 STARR-seq 分析 Zelda 依賴增強子活性
★ 以重組桿狀病毒表達系統建構果蠅Zelda基因 及其交互作用分子之篩選★ 製作 anti-Zelda antibody 與分析 Zelda 表現量
★ 利用果蠅大腸癌模型探討左旋硒代胱胺酸之抗癌效果★ 透過免疫共沉澱和質譜分析鑑定 Zelda 輔助因子
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-5-29以後開放)
摘要(中) 在早期胚胎發育中,母源-子源轉換期 (MZT) 是一個關鍵過程,其中涉及兩個主要 事件:合子基因組的活化 (ZGA) 和母體成分的降解。在果蠅胚胎中,轉錄因子 Zelda (Zld) 被認為是啟動 ZGA 的關鍵活化因子,在 MZT 期間 Zelda 扮演著多重角色,主要 為 (1) 作為強大的活化因子直接活化 ZGA,(2) 作為先鋒因子,增強染色質的可及性, 助益其他轉錄因子與基因體的結合,進而促進轉錄作用。先前針對早期果蠅胚胎,藉 由染色質免疫沉澱定序 (ChIP-seq) 和微球菌核酸酶定序 (MNase-seq) 的分析已經確認 Zelda 作為先鋒因子調節染色質景觀的能力。目前,我們探討了 Zelda 是否有潛力在已 分化的果蠅細胞中重新編程轉錄組,我們利用 Bac-to-Bac 表達系統在果蠅晚期胚胎細 胞 S2 細胞中異位表達 Zelda,由 RNA-seq 數據顯示 Zelda 能夠重新激活大約 75%的早期 基因,以及成體幹細胞的標記,證明了 Zelda 重新編程的潛力,在本研究中,我進一步 探討 Zelda 是否能夠在 S2 細胞中重塑其染色質景觀。
首先我優化了重組桿狀病毒的產量以及 Zelda 在 S2 細胞中的表達效率,使重組桿 狀病毒的感染能力增加約 100 倍。其次,我進行了轉座酶可及染色質測序 (ATAC-seq) 以檢查 Zelda 對 S2 細胞染色質的影響,並與先前實驗室結果和文獻比較,研究染色質 開放性與基因表達、Zelda 結合等等的相關性。整體而言,於對照組及實驗組中分別發 現了 62,414 和 28,275 個開放區域,將 Zelda 對染色質的影響可大致分為三類: (1) 原本 較封閉的區域在表達 Zelda 後變得更加開放與集中,開放程度與 Zelda 結合強度呈現正 相關,並與 ATAC 峰值附近的上調基因相關,這表示 Zelda 有能力在 S2 細胞中增加染 色質的可及性。 (2) 原本開放、且鄰近基因激活的區域,因 Zelda 的存在而變得封閉, 推測這些區域具有較高的可及性,致使 Zelda 與這些區域結合。有趣的是 Zelda 的結合 導致染色質變得封閉且基因下調,是否此為 Zelda 的直接影響還需進一步的研究。 (3) 無論 Zelda 存在與否都沒有變化的區域。未來進一步分析三個類別之間的差異可能會提 供更多有關 Zelda 功能的解析,並能定義出染色質受 Zelda 影響的特徵。
摘要(英) In early embryonic development, the maternal-to-zygotic transition (MZT) is a crucial process, which involves two main events, the zygotic genome activation (ZGA) and the degradation of maternal components. In Drosophila embryos, the transcription factor Zelda (Zld) is known as the key activator to initiate ZGA. During MZT, Zelda serves multiple roles, mainly (1) as a strong activator that directly triggers ZGA, (2) as a pioneer factor, which enhances chromatin accessibility, thus facilitating the binding of the other transcription factors and promoting transcription. Previous analyses using Chromatin Immunoprecipitation- Sequencing (ChIP-seq) and Micrococcal Nuclease-Sequencing (MNase-seq) in early Drosophila embryos, have confirmed its role as a pioneer factor in regulating the chromatin landscape. Currently, we asked whether Zelda has the potential to reprogram the transcriptome in differentiated Drosophila cells. We were able to use the Bac-to-Bac expression system to ectopically express Zelda in the Drosophila late-stage embryonic cells, S2 cells. RNA-seq data revealed that Zelda could re-activate approximately 75% of early genes, along with markers of adult stem cells, indicating a potential for reprogramming. In my study, we asked whether Zelda is able to remodel chromatin landscape in S2 cells.
I first optimized the yield of recombinant baculovirus and the efficiency of Zelda expression in S2 cells, by attaining approximately 100-fold increase in infectivity. Secondly, I conducted ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) to examine the effects of Zelda on chromatin in S2 cells, and investigated its correlation to the expression and Zelda binding profiles from previous lab results and literatures. Overall, 62,414 and 28,275 open regions were recovered in the control group and experimental group, respectively. The effects of Zelda on chromatin could be categorized into three classes. (1) Regions that were originally more closed became more open and concentrated in the presence of Zelda. The openness was positively correlated with the strength of Zelda binding and associated with up-regulated genes nearby the ATAC peaks. This suggested that Zelda has the ability to increase chromatin accessibility in S2 cells. (2) Regions that were originally open and associated with gene expression became closed within Zelda expression. Zelda may bind to these regions due to their high-accessibility. Intriguingly, Zelda binding led to more closed chromatin and down-regulated genes. Whether it is the direct effect of Zelda requires further investigation. (3) Regions that were unchanged with or without the presence of Zelda. Further analysis of the differences among the three classes may provide more insights of Zelda function and define Zelda-responsive features of chromatin.
關鍵字(中) ★ 果蠅
★ 染色質可及性
★ 早期胚胎發育
★ 先鋒因子
關鍵字(英) ★ MZT
★ Drosophila
★ ATAC-seq
★ Zelda
★ pioneer factor
★ chromatin accessibility
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xi
中英文對照表 xii
壹、前言 1
1.1 黑腹果蠅早期胚胎發育 1
1.2 早期胚胎發育的基因表現 2
1.2.1 母源-子源轉換期 (Maternal-to-zygotic transition, MZT) 2
1.2.2 合子基因組激活 3
1.3 黑腹果蠅轉錄因子Zelda與其功能 5
1.3.1 Zelda的發現 5
1.3.2 Zelda調控果蠅早期胚胎發育 6
1.3.3 Zelda影響母源軸向基因的作用 8
1.3.4 Zelda具有先鋒因子 (pioneer factor, PF) 的特性 9
1.4 Zelda對其他細胞的影響 10
1.4.1 Zelda對type II NB分化的影響 10
1.4.2 Zelda對胚胎晚期已分化細胞的影響 11
1.5 先鋒因子與重新編程 (reprogramming) 的關聯 12
1.6 ATAC-seq/MNase-seq介紹與區別 14
1.7 桿狀病毒表達系統Bac-to-Bac expression system 14
1.8 Self-transcribing active regulatory region sequencing (STARR-seq) 介紹 16
1.9 研究動機與目的 17
貳、實驗材料與方法 19
2.1 實驗材料 19
2.1.1 菌種與質體 19
2.1.2聚合酶連鎖反應引子 (Polymerase chain reaction primers) 20
2.1.3 細胞株 21
2.1.4 果蠅品系 21
2.2 實驗方法 21
2.2.1 質體抽取 (Alkaline lysis) 21
2.2.2 桿狀病毒質粒 (Bacmid) 抽取 21
2.2.3 果蠅genomic DNA (gDNA) 抽取 22
2.2.4 利用超音波細胞粉碎儀 (Ultrasonic processor) 將果蠅gDNA震斷並純化 23
2.2.5 DNA膠體電泳 (DNA gel electrophoresis) 23
2.2.6 電泳膠回收DNA 23
2.2.7 Sf9細胞培養 24
2.2.8 S2細胞培養 24
2.2.9 將bacmid DNA轉染 (transfect) 至Sf9細胞生產P0重組桿狀病毒 24
2.2.10 重組桿狀病毒擴增 (Baculovirus amplification) 25
2.2.11 半數細胞感染劑量 (50% tissue culture infective dose, TCID50) 26
2.2.12 在S2細胞中異位表達Zelda 26
2.2.13 將感染zld重組桿狀病毒的S2細胞進行sorting 27
2.2.14 ATAC-seq library製備 27
2.2.15 STARR-seq library製備 29
2.2.16 傳統法之大腸桿菌勝任細胞 (Competent cell) 製作 33
2.2.17 電穿孔法之大腸桿菌勝任細胞 (Competent cell) 製作 33
2.2.18 電菌及細菌轉形作用 (Electroporation and Transformation) 33
2.2.19 以限制酶切割 (Enzyme digestion) 確認Library DNA大小 34
2.2.20 收集STARR-seq library colony並製備stock 34
2.2.21 RNA-seq數據分析 34
2.2.22 ATAC-seq數據分析 35
2.2.23 CHIP-seq數據分析 35
參、實驗結果 36
3.1 以桿狀病毒表達系統異位表達Zelda 37
3.1.1 將bacmid轉染至Sf9細胞以製備P0-P2重組桿狀病毒 38
3.1.2 優化P3重組桿狀病毒的產率 38
3.1.3 計算多重感染複數 (multiplicity of infection, MOI) 39
3.2 測試不同MOI之重組桿狀病毒感染S2細胞之效率 39
3.3 以qRT-PCR確認PCR擴增的ATAC-seq library tagmented DNA片段 42
3.4 未感染的S2與感染Zelda重組病毒的S2細胞之RNA-seq分析 43
3.4.1 RNA-seq數據的前處理 44
3.4.2差異基因表現分析 (Differential expression analysis) 47
3.4.3 異位表達Zelda的S2細胞與早期胚胎的基因表現比較 47
3.5 Zelda對S2細胞染色質區域的影響 50
3.5.1 ATAC-seq數據的前處理 50
3.5.2以散點圖與箱型圖呈現Zelda對S2細胞中染色質區域的影響 51
3.5.3 Zelda對染色質開放程度的影響 51
3.5.4 染色質開放程度與基因表現之關係 52
3.6 染色質開放程度與Zelda結合位點的關聯 54
3.7製備STARR-seq library 58
3.7.1準備pSTARR-fly載體 58
3.7.2 製備果蠅gDNA片段 60
3.7.3 library的製備 60
3.7.4 測試不同條件下製備STARR-seq library 61
3.7.5 以EcoRI與HindIII切割單一菌落之質體 64
肆、實驗討論 67
4.1 於S2細胞中異位表達Zelda桿狀病毒之劑量 67
4.2 以TMM進行RNA-seq數據的標準化處理 67
4.3 異位表達Zelda的S2細胞中的基因表現 67
4.4 於異位表達Zelda的S2細胞中的早期基因與胚胎中的差異 68
4.5 染色質總體開放程度在異位表達Zelda的S2細胞中降低 69
4.6 未來研究與應用 70
參考資料 71
附錄 77
附錄一於S2細胞中異位表達Zelda的染色質開放程度與Zelda結合位點的關聯,以heatmap呈現 77
參考文獻 1. Mirzoyan, Z., et al., Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet, 2019. 10: p. 51.
2. Ugur, B., K. Chen, and H.J. Bellen, Drosophila tools and assays for the study of human diseases. Dis Model Mech, 2016. 9(3): p. 235-44.
3. Chien, S., et al., Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res, 2002. 30(1): p. 149-51.
4. Yamamoto, S., et al., A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell, 2014. 159(1): p. 200-214.
5. Colonnetta, M.M., et al., CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics, 2021. 219(2).
6. Foe, V.E. and B.M. Alberts, Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci, 1983. 61: p. 31-70.
7. Lecuyer, E., et al., Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell, 2007. 131(1): p. 174-87.
8. Tadros, W., et al., SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell, 2007. 12(1): p. 143-55.
9. ten Bosch, J.R., J.A. Benavides, and T.W. Cline, The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development, 2006. 133(10): p. 1967-77.
10. Aviv, T., et al., The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat Struct Biol, 2003. 10(8): p. 614-21.
11. Semotok, J.L., et al., Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol, 2005. 15(4): p. 284-94.
12. Bushati, N., et al., Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol, 2008. 18(7): p. 501-6.
13. Liang, H.L., et al., The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature, 2008. 456(7220): p. 400-3.
14. Bashirullah, A., et al., Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J, 1999. 18(9): p. 2610-20.
15. Hamm, D.C. and M.M. Harrison, Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol, 2018. 8(12): p. 180183.
16. Darbo, E., et al., Transcriptional and epigenetic signatures of zygotic genome activation during early Drosophila embryogenesis. BMC Genomics, 2013. 14: p. 226.
17. De Renzis, S., et al., Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol, 2007. 5(5): p. e117.
18. Schweisguth, F., J.A. Lepesant, and A. Vincent, The serendipity alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo. Genes Dev, 1990. 4(6): p. 922-31.
19. Rose, L.S. and E. Wieschaus, The Drosophila cellularization gene nullo produces a blastoderm-specific transcript whose levels respond to the nucleocytoplasmic ratio. Genes Dev, 1992. 6(7): p. 1255-68.
20. Lecuit, T., R. Samanta, and E. Wieschaus, slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell, 2002. 2(4): p. 425-36.
21. Nien, C.Y., et al., Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet, 2011. 7(10): p. e1002339.
22. Lee, M.T., et al., Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013. 503(7476): p. 360-4.
23. Pilot, F., et al., Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development, 2006. 133(4): p. 711-23.
24. Lott, S.E., et al., Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq. PLoS Biol, 2011. 9(2): p. e1000590.
25. Gardini, A., Global Run-On Sequencing (GRO-Seq). Methods Mol Biol, 2017. 1468: p. 111-20.
26. Smale, S.T., Nuclear run-on assay. Cold Spring Harb Protoc, 2009. 2009(11): p. pdb prot5329.
27. Saunders, A., et al., Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev, 2013. 27(10): p. 1146-58.
28. Ibarra-Morales, D., et al., Histone variant H2A.Z regulates zygotic genome activation. Nat Commun, 2021. 12(1): p. 7002.
29. Chen, K., et al., A global change in RNA polymerase II pausing during the Drosophila midblastula transition. Elife, 2013. 2: p. e00861.
30. Kwasnieski, J.C., T.L. Orr-Weaver, and D.P. Bartel, Early genome activation in Drosophila is extensive with an initial tendency for aborted transcripts and retained introns. Genome Res, 2019. 29(7): p. 1188-1197.
31. Stathopoulos, A. and M. Levine, Genomic regulatory networks and animal development. Dev Cell, 2005. 9(4): p. 449-62.
32. Harrison, M.M., et al., Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet, 2011. 7(10): p. e1002266.
33. Foo, S.M., et al., Zelda potentiates morphogen activity by increasing chromatin accessibility. Curr Biol, 2014. 24(12): p. 1341-1346.
34. Schloop, A.E., P.U. Bandodkar, and G.T. Reeves, Formation, interpretation, and regulation of the Drosophila Dorsal/NF-kappaB gradient. Curr Top Dev Biol, 2020. 137: p. 143-191.
35. Liberman, L.M., G.T. Reeves, and A. Stathopoulos, Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc Natl Acad Sci U S A, 2009. 106(52): p. 22317-22.
36. Sun, Y., et al., Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res, 2015. 25(11): p. 1703-14.
37. Driever, W. and C. Nusslein-Volhard, A gradient of bicoid protein in Drosophila embryos. Cell, 1988. 54(1): p. 83-93.
38. Chen, H., et al., A system of repressor gradients spatially organizes the boundaries of Bicoid-dependent target genes. Cell, 2012. 149(3): p. 618-29.
39. Xu, Z., et al., Impacts of the ubiquitous factor Zelda on Bicoid-dependent DNA binding and transcription in Drosophila. Genes Dev, 2014. 28(6): p. 608-21.
40. Zaret, K.S. and J.S. Carroll, Pioneer transcription factors: establishing competence for gene expression. Genes Dev, 2011. 25(21): p. 2227-41.
41. Wang, H., et al., Evidence for tissue-specific Jak/STAT target genes in Drosophila optic lobe development. Genetics, 2013. 195(4): p. 1291-306.
42. Larson, E.D., et al., Cell-type-specific chromatin occupancy by the pioneer factor Zelda drives key developmental transitions in Drosophila. Nat Commun, 2021. 12(1): p. 7153.
43. Reichardt, I., et al., The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Rep, 2018. 19(1): p. 102-117.
44. Wang, S. and C. Samakovlis, Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr Top Dev Biol, 2012. 98: p. 35-63.
45. Simpson, P., Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics, 1983. 105(3): p. 615-32.
46. Schneider, I., Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol, 1972. 27(2): p. 353-65.
47. Larkin, A., et al., FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res, 2021. 49(D1): p. D899-D907.
48. Gibson, T.J. and M.M. Harrison, Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. bioRxiv, 2023.
49. Zaret, K.S., Pioneer Transcription Factors Initiating Gene Network Changes. Annu Rev Genet, 2020. 54: p. 367-385.
50. Iwafuchi-Doi, M. and K.S. Zaret, Pioneer transcription factors in cell reprogramming. Genes Dev, 2014. 28(24): p. 2679-92.
51. Paraiso, K.D., et al., Endodermal Maternal Transcription Factors Establish Super-Enhancers during Zygotic Genome Activation. Cell Rep, 2019. 27(10): p. 2962-2977 e5.
52. Schulz, K.N. and M.M. Harrison, Mechanisms regulating zygotic genome activation. Nat Rev Genet, 2019. 20(4): p. 221-234.
53. Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p. 379-91.
54. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003. 17(1): p. 126-40.
55. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
56. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
57. Soufi, A., Mechanisms for enhancing cellular reprogramming. Curr Opin Genet Dev, 2014. 25: p. 101-9.
58. Mansisidor, A.R. and V.I. Risca, Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus, 2022. 13(1): p. 236-276.
59. Dingwall, C., G.P. Lomonossoff, and R.A. Laskey, High sequence specificity of micrococcal nuclease. Nucleic Acids Res, 1981. 9(12): p. 2659-73.
60. Buenrostro, J.D., et al., Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods, 2013. 10(12): p. 1213-8.
61. Ciccarone, V.C., D.A. Polayes, and V.A. Luckow, Generation of Recombinant Baculovirus DNA in E.coli Using a Baculovirus Shuttle Vector. Methods Mol Med, 1998. 13: p. 213-35.
62. van Oers, M.M. and J.M. Vlak, Baculovirus genomics. Curr Drug Targets, 2007. 8(10): p. 1051-68.
63. Ayres, M.D., et al., The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology, 1994. 202(2): p. 586-605.
64. van Oers, M.M., Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv Virus Res, 2006. 68: p. 193-253.
65. Smith, G.E., M.D. Summers, and M.J. Fraser, Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983. 3(12): p. 2156-65.
66. Weyer, U. and R.D. Possee, A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells. J Gen Virol, 1991. 72 ( Pt 12): p. 2967-74.
67. Vlak, J.M., et al., Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-beta-galactosidase fusion gene. J Gen Virol, 1988. 69 ( Pt 4): p. 765-76.
68. Vaughn, J.L., et al., The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro, 1977. 13(4): p. 213-7.
69. Cheng, X.H., et al., Reduction of polyhedrin mRNA and protein expression levels in Sf9 and Hi5 cell lines, but not in Sf21 cells, infected with Autographa californica multiple nucleopolyhedrovirus fp25k mutants. J Gen Virol, 2013. 94(Pt 1): p. 166-176.
70. Lee, D.F., et al., A baculovirus superinfection system: efficient vehicle for gene transfer into Drosophila S2 cells. J Virol, 2000. 74(24): p. 11873-80.
71. Kang, C.-C., Construction and ectopic expression of Drosophila Zelda using baculovirus system for functional analysis. 2023, NCU.
72. Yu, Z., Testing S2 cells ectopically expressing Zelda as a platform for mapping Zelda dependent-enhancers by STARR-seq. 2022, NCU.
73. Lettice, L.A., et al., A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet, 2003. 12(14): p. 1725-35.
74. Andersson, R. and A. Sandelin, Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet, 2020. 21(2): p. 71-87.
75. Arnold, C.D., et al., Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 2013. 339(6123): p. 1074-7.
76. Zabidi, M.A., et al., Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature, 2015. 518(7540): p. 556-9.
77. Scholz, J. and S. Suppmann, A new single-step protocol for rapid baculovirus-driven protein production in insect cells. BMC Biotechnol, 2017. 17(1): p. 83.
78. van Loo, N.D., et al., Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol, 2001. 75(2): p. 961-70.
79. Ramakrishnan, M.A., Determination of 50% endpoint titer using a simple formula. World J Virol, 2016. 5(2): p. 85-6.
80. Kim, D., Paggi, J.M., Park, C. et al, Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907–915, 2019: p. https://doi.org/10.1038s41587-019-0201-4.
81. Anders S, R.A., Huber W, Detecting differential usage of exons from RNA-seq data. Genome Research, 22, 4025, 2012: p. Reyes A, Anders S, Weatheritt R, Gibson T, Steinmetz L, Huber W (2013). “Drift and conservation of differential exon usage across tissues in primate species.” PNAS, 110, -5. doi:10.1073/pnas.1307202110.
82. Sonia Tarazona, P.F.-T., Maria Jose Nueda, Alberto Ferrer and Ana Conesa, “Differential expression in RNA-seq: a matter of depth.”. Genome Research, 21(12), 4436., 2011: p. Tarazona S, Furio-Tari P, Turra D, Pietro AD, Nueda MJ, Ferrer A, Conesa A (2015). “Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package.” Nucleic Acids Research, 43(21), e140.
83. Robinson, M.D. and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol, 2010. 11(3): p. R25.
84. Ramirez, F., et al., deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res, 2016. 44(W1): p. W160-5.
85. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9.
86. Zhang, Y., et al., Model-based analysis of ChIP-Seq (MACS). Genome Biol, 2008. 9(9): p. R137.
87. Wu, T.Y., et al., A bi-cistronic baculovirus expression vector for improved recombinant protein production. Bioeng Bugs, 2012. 3(2): p. 129-32.
88. Barry, G.F., A broad-host-range shuttle system for gene insertion into the chromosomes of gram-negative bacteria. Gene, 1988. 71(1): p. 75-84.
89. Expression system. p. https://expressionsystems.com/product/insect-cells/.
90. Bullard, J.H., et al., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 2010. 11: p. 94.
91. Abbas-Aghababazadeh, F., Q. Li, and B.L. Fridley, Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing. PLoS One, 2018. 13(10): p. e0206312.
92. Oshlack, A. and M.J. Wakefield, Transcript length bias in RNA-seq data confounds systems biology. Biol Direct, 2009. 4: p. 14.
93. Neumayr, C., et al., STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries. Curr Protoc Mol Biol, 2019. 128(1): p. e105.
94. Tu, Q., et al., Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency. Sci Rep, 2016. 6: p. 24648.
95. Ning Wu, K.M., Bizuayehu Kebede, George Acquaah, Sonya Williams, Enhancing DNA electrotransformation efficiency in Escherichia coli DH10B electrocompetent cells, in Electronic Journal of Biotechnology, Vol 13, No 5 (2010). 2010.
指導教授 粘仲毅(Chung-Yi Nien) 審核日期 2024-6-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明