參考文獻 |
1. Center, E.i. Global fossil CO2 emissions have risen steadily over the last decades Emissions are set to grow again in 2023. [cited 2024 June 5]; Available from: https://e-info.org.tw/node/238111.
2. Chen, H., et al., Progress in electrical energy storage system: A critical review. Progress in natural science, 2009. 19(3): p. 291-312.
3. Ding, Y., et al., Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2019. 2: p. 1-28.
4. Ryu, J., et al., Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Research, 2017. 10: p. 3970-4002.
5. Nzereogu, P., et al., Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances, 2022. 9: p. 100233.
6. Roy, P. and S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015. 3(6): p. 2454-2484.
7. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243-3262.
8. Son, Y., et al., Analysis of differences in electrochemical performance between coin and pouch cells for lithium‐ion battery applications. Energy & Environmental Materials, 2024. 7(3): p. e12615.
9. Qi, W., et al., Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. Journal of Materials Chemistry A, 2017. 5(37): p. 19521-19540.
10. Nazri, G.-A. and G. Pistoia, Lithium batteries: science and technology. 2008: Springer Science & Business Media.
11. Osiak, M., et al., Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9433-9460.
12. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of power sources, 2014. 257: p. 421-443.
13. Persson, K., et al., Lithium diffusion in graphitic carbon. The journal of physical chemistry letters, 2010. 1(8): p. 1176-1180.
14. Schauerman, C.M., et al., Recycling single-wall carbon nanotube anodes from lithium ion batteries. Journal of Materials Chemistry, 2012. 22(24): p. 12008-12015.
15. Hou, J., et al., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 2011. 13(34): p. 15384-15402.
16. Lu, J., et al., High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews, 2018. 1: p. 35-53.
17. Speirs, J., et al., The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews, 2014. 35: p. 183-193.
18. Su, L., Y. Jing, and Z. Zhou, Li ion battery materials with core–shell nanostructures. Nanoscale, 2011. 3(10): p. 3967-3983.
19. Lu, Y., L. Yu, and X.W.D. Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem, 2018. 4(5): p. 972-996.
20. Ji, L., et al., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011. 4(8): p. 2682-2699.
21. Xu, J.-S. and Y.-J. Zhu, Monodisperse Fe3O4 and γ-Fe2O3 magnetic mesoporous microspheres as anode materials for lithium-ion batteries. ACS applied materials & interfaces, 2012. 4(9): p. 4752-4757.
22. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
23. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
24. Thackeray, M.M., et al., Lithium insertion into manganese spinels. Materials research bulletin, 1983. 18(4): p. 461-472.
25. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources, 1999. 81: p. 472-479.
26. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
27. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 4. 2018.
28. Bhatt, M.D. and C. O′Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical chemistry chemical physics, 2015. 17(7): p. 4799-4844.
29. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of power sources, 2007. 164(1): p. 351-364.
30. Francis, C.F., I.L. Kyratzis, and A.S. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review. Advanced Materials, 2020. 32(18): p. 1904205.
31. Ahn, S., et al., Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives. Journal of power sources, 1999. 81: p. 896-901.
32. Wang, K., et al., Hybrid super-aligned carbon nanotube/carbon black conductive networks: A strategy to improve both electrical conductivity and capacity for lithium ion batteries. Journal of Power Sources, 2013. 233: p. 209-215.
33. Kuroda, S., et al., Charge–discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. Journal of Power Sources, 2003. 119: p. 924-928.
34. Wang, Y.-B., et al., Strategies of binder design for high-performance lithium-ion batteries: a mini review. Rare Metals, 2022: p. 1-17.
35. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science, 2011. 334(6058): p. 928-935.
36. Courtel, F.M., et al., Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. Journal of power sources, 2011. 196(4): p. 2128-2134.
37. Shin, D., H. Park, and U. Paik, Cross-linked poly (acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochemistry Communications, 2017. 77: p. 103-106.
38. Li, L., et al., Co3O4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries. Journal of Power Sources, 2014. 255: p. 52-58.
39. Kim, S.-W., et al., Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Research, 2011. 4: p. 505-510.
40. Song, M.S., et al., Solvothermal synthesis of ZnMn2O4 as an anode material in lithium ion battery. Electrochimica Acta, 2014. 137: p. 266-272.
41. Yang, G., et al., Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Materials Letters, 2014. 128: p. 336-339.
42. Feng, T., et al., Pomegranate-structured ZnMn2O4 microspheres for long cycle life lithium ion anode and elucidation of its conversion mechanism. Journal of The Electrochemical Society, 2020. 167(6): p. 060507.
43. Bruce, P.G., B. Scrosati, and J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008. 47(16): p. 2930-2946.
44. Yang, Y., et al., Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochemistry communications, 2008. 10(8): p. 1117-1120.
45. Zhou, L., et al., Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012. 22(3): p. 827-829.
46. Wang, N., et al., Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy, 2014. 6: p. 193-199.
47. Vu, A., Y. Qian, and A. Stein, Porous electrode materials for lithium‐ion batteries–how to prepare them and what makes them special. Advanced Energy Materials, 2012. 2(9): p. 1056-1085.
48. Li, Y., Z.Y. Fu, and B.L. Su, Hierarchically structured porous materials for energy conversion and storage. Advanced Functional Materials, 2012. 22(22): p. 4634-4667.
49. Song, T., L. Hu, and U. Paik, One-dimensional silicon nanostructures for Li ion batteries. The Journal of Physical Chemistry Letters, 2014. 5(4): p. 720-731.
50. Petkovich, N.D., et al., Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorganic chemistry, 2014. 53(2): p. 1100-1112.
51. Armstrong, G., et al., TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Advanced Materials, 2006. 18(19): p. 2597-2600.
52. Lotfabad, E.M., et al., Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. Journal of Materials Chemistry A, 2014. 2(8): p. 2504-2516.
53. Yi, Z., et al., Facile fabrication of SnO2@TiO2 core–shell structures as anode materials for lithium-ion batteries. Journal of materials chemistry A, 2016. 4(33): p. 12850-12857.
54. Wang, X., et al., Core–shell Ge@graphene@TiO2 nanofibers as a high‐capacity and cycle‐stable anode for lithium and sodium ion battery. Advanced Functional Materials, 2016. 26(7): p. 1104-1111.
55. Du, J., et al., Investigation of the soft carbon microstructure in silicon/carbon anodes for superior lithium storage. RSC advances, 2022. 12(32): p. 20672-20678.
56. Hou, G., et al., Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. Nano Energy, 2016. 24: p. 111-120.
57. Zuo, P., et al., Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Materials Chemistry and Physics, 2009. 115(2-3): p. 757-760.
58. Alfaruqi, M.H., et al., Pyro-synthesis of nanostructured spinel ZnMn2O4/C as negative electrode for rechargeable lithium-ion batteries. Electrochimica Acta, 2015. 151: p. 558-564.
59. Zhang, L.-X., et al., Hollow core–shell ZnMn2O4 microspheres as a high-performance anode material for lithium-ion batteries. Ceramics International, 2015. 41(8): p. 9655-9661.
60. Courtel, F.M., Y. Abu-Lebdeh, and I.J. Davidson, ZnMn2O4 nanoparticles synthesized by a hydrothermal method as an anode material for Li-ion batteries. Electrochimica acta, 2012. 71: p. 123-127.
61. Li, P., et al., Three-dimensional ZnMn2O4/porous carbon framework from petroleum asphalt for high performance lithium-ion battery. Electrochimica Acta, 2015. 180: p. 164-172.
62. Dong, L., et al., Three‐dimensional ZnMn2O4 nanoparticles/carbon cloth anodes for high‐performance flexible lithium‐ion batteries. ChemistrySelect, 2020. 5(8): p. 2372-2378.
63. Zhang, T., et al., Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries. Electrochimica Acta, 2016. 198: p. 84-90.
64. Xu, D., et al., Amorphous TiO2 layer on silicon monoxide nanoparticles as stable and scalable core-shell anode materials for high performance lithium ion batteries. Applied Surface Science, 2019. 479: p. 980-988.
65. Levchenko, A.A., et al., TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chemistry of Materials, 2006. 18(26): p. 6324-6332.
66. Da Silva, A.L., D. Hotza, and R.H. Castro, Surface energy effects on the stability of anatase and rutile nanocrystals: A predictive diagram for Nb2O5-doped-TiO2. Applied Surface Science, 2017. 393: p. 103-109.
67. Liang, C., et al., ZnMn2O4 spheres anchored on jute porous carbon for use as a high-performance anode material in lithium-ion batteries. Journal of Alloys and Compounds, 2021. 878: p. 160445.
68. Zhang, L., et al., Hierarchical Porous ZnMn2O4 Hollow Nanotubes with Enhanced Lithium Storage toward Lithium‐Ion Batteries. Chemistry–A European Journal, 2015. 21(30): p. 10771-10777.
69. Zhang, Y., et al., Synthesis of pomegranate-shaped micron ZnMn2O4 with enhanced lithium storage capability. Journal of Materiomics, 2021. 7(4): p. 699-707.
70. Zhang, T., et al., Nano-particle assembled porous core–shell ZnMn2O4 microspheres with superb performance for lithium batteries. Nanotechnology, 2017. 28(10): p. 105403.
71. Tang, Q., et al., Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries. Electrochimica Acta, 2020. 338: p. 135853.
72. Chu, Y., et al., Embedding MnO@ Mn3O4 nanoparticles in an N‐doped‐carbon framework derived from Mn‐organic clusters for efficient lithium storage. Advanced Materials, 2018. 30(6): p. 1704244.
73. Jiang, Y., et al., Highly porous Mn3O4 micro/nanocuboids with in situ coated carbon as advanced anode material for lithium‐ion batteries. Small, 2018. 14(19): p. 1704296.
74. Zhao, Z., et al., Elucidating the energy storage mechanism of ZnMn2O4 as promising anode for Li-ion batteries. Journal of Materials Chemistry A, 2018. 6(40): p. 19381-19392.
75. Duncan, H., F.M. Courtel, and Y. Abu-Lebdeh, A study of the solid-electrolyte-interface (SEI) of ZnMn2O4: a conversion-type anode material for Li-ion batteries. Journal of The Electrochemical Society, 2015. 162(13): p. A7110.
76. Su, L., Z. Zhou, and P. Shen, Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. The Journal of Physical Chemistry C, 2012. 116(45): p. 23974-23980.
77. Zhang, R., et al., Single‐phase mixed transition metal carbonate encapsulated by graphene: facile synthesis and improved lithium storage properties. Advanced Functional Materials, 2018. 28(10): p. 1705817.
78. Wagemaker, M. and F.M. Mulder, Properties and promises of nanosized insertion materials for Li-ion batteries. Accounts of chemical research, 2013. 46(5): p. 1206-1215.
79. Wagemaker, M., W.J. Borghols, and F.M. Mulder, Large impact of particle size on insertion reactions. a case for anatase LixTiO2. Journal of the American Chemical Society, 2007. 129(14): p. 4323-4327.
80. Li, J., et al., Effect of Ni content in NixMn1-xCO3 (x= 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochimica Acta, 2018. 276: p. 333-342.
81. Ahmia, N., et al., Photocatalytic activity of ZnMn2O4/TiO2 heterostructure under solar light irradiation: Experimental and theoretical study. Journal of Molecular Structure, 2024: p. 137834.
82. Kim, A.-Y., et al., Hierarchical hollow dual Core–Shell carbon nanowall-encapsulated p–n SnO/SnO2 heterostructured anode for high-performance lithium-ion-based energy storage. Carbon, 2019. 153: p. 62-72.
83. Wang, D., et al., Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy & Environmental Science, 2013. 6(10): p. 2900-2906.
84. Lee, D., et al., Understanding the critical role of the Ag nanophase in boosting the initial reversibility of transition metal oxide anodes for lithium-ion batteries. ACS applied materials & interfaces, 2017. 9(26): p. 21715-21722.
85. Zhang, N., et al., Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, 2014. 6(5): p. 2827-2832.
86. Laruelle, S., et al., On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. Journal of the Electrochemical Society, 2002. 149(5): p. A627.
87. Xu, Y., J. Guo, and C. Wang, Sponge-like porous carbon/tin composite anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012. 22(19): p. 9562-9567.
88. Wei, T.-T., et al., Construction of porous biphasic ZnTiO3 rods as anode materials for high-performance Li-ion batteries driven by a hybrid Li storage mechanism. Applied Surface Science, 2023. 620: p. 156805.
89. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
90. An, Y.-B., et al., Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Metals, 2019. 38: p. 1113-1123.
91. Xie, F., et al., Hard–soft carbon composite anodes with synergistic sodium storage performance. Advanced functional materials, 2019. 29(24): p. 1901072.
92. Sun, B., et al., Enhanced active sulfur in soft carbon via synergistic doping effect for ultra–stable lithium–ion batteries. Energy Storage Materials, 2020. 24: p. 450-457.
93. Cao, B., et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 2016. 4(17): p. 6472-6478.
94. Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 2015. 87(9-10): p. 1051-1069.
95. Liu, Z., et al., Facile synthesis of hybrid pitch-based soft carbon as high-performance silicon/carbon anodes for lithium-ion batteries. Ionics, 2022. 28(8): p. 3709-3718.
96. Li, H., et al., Enhanced reversible capability of a macroporous ZnMn2O4/C microsphere anode with a water-soluble binder for long-life and high-rate lithium-ion storage. Inorganic Chemistry Frontiers, 2019. 6(6): p. 1535-1545.
97. Zhang, Y., et al., Porous ZnMn2O4 nanowires as an advanced anode material for lithium ion battery. Electrochimica Acta, 2015. 182: p. 1140-1144.
98. Chen, X., et al., Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. Journal of Power Sources, 2016. 312: p. 137-145.
99. Carey, T., et al., Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage. npj 2D Materials and Applications, 2022. 6(1): p. 3.
100. Jin, Z., et al., Understanding the correlation between microstructure and electrochemical performance of hybridized pitch cokes for lithium-ion battery through tailoring their evolutional structures from ordered soft carbon to disordered hard carbon. Journal of Alloys and Compounds, 2021. 887: p. 161357.
101. Allagui, A., et al., Reevaluation of performance of electric double-layer capacitors from constant-current charge/discharge and cyclic voltammetry. Scientific reports, 2016. 6(1): p. 38568.
102. Dahn, J., W. Xing, and Y. Gao, The “falling cards model” for the structure of microporous carbons. Carbon, 1997. 35(6): p. 825-830.
103. Liu, Y., et al., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon, 1996. 34(2): p. 193-200.
104. Chang, P.-y., C.-h. Huang, and R.-a. Doong, Ordered mesoporous carbon–TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon, 2012. 50(11): p. 4259-4268.
105. Ma, T., et al., Hierarchical pores from microscale to macroscale boost ultrahigh lithium intercalation pseudocapacitance of biomass carbon. Journal of Energy Storage, 2021. 33: p. 102068.
106. Gao, Q., et al., Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries. Electrochimica Acta, 2018. 270: p. 417-425.
107. Yin, L., et al., Spinel ZnMn2O4 nanocrystal‐anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Advanced Functional Materials, 2014. 24(26): p. 4176-4185.
108. Xiao, L., et al., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources, 2009. 194(2): p. 1089-1093.
109. Zhang, T., et al., A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon, 2017. 123: p. 717-725. |