參考文獻 |
[1] 陳祉雲,李玉郎,關鍵自主的綠色能源材料,科學發展2019年12月第564期。
[2] M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer and X. Hao, Solar cell efficiency tables (version 63), Prog Photovolt Res Appl. 2024, 32, 3–13.
[3] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting, Nat. Photon. 2017, 11, 372–378.
[4] C. A. Gueymard, D. Myers and K. Emery, Proposed reference irradiance spectra for solar energy systems testing, Solar Energy 2002, 73, 443–467.
[5] T. Pavlovic, Solar energy, the sun and photovoltaic technologies, Springer 2020.
[6] K. Sharma, V. Sharma and S. S. Sharma, Dye-sensitized solar cells: Fundamentals and current status, Nanoscale Res. Lett. 2018, 13, 381.
[7] N. T. R. N. Kumara, A. Lim, C. M. Lim, M. I. Petra, P. Ekanayake, Recent progress and utilization of natural pigments in dye sensitized solar cells: A review, Renew. Sustain. Energy Rev. 2017, 78, 301–317.
[8] M. S. Kim, B. G. Kim and J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS Appl. Mater. Interfaces 2009, 1, 1264–1269.
[9] A. Atia, F. Anayi and M. Gao, Influence of shading on solar cell parameters and modelling accuracy improvement of PV modules with reverse biased solar cells, Energies 2022, 15, 1–19.
[10] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, Controlled electron injection and transport at materials interfaces in dye sensitized solar cells, Mater. Sci. Eng. R. 2009, 63, 81–99.
[11] K. Park, Q. Zhang, D. Myers and G. Cao, Charge transport properties in TiO2 network with diferent particle sizes for dye sensitized solar cells, ACS Appl. Mater. Interfaces 2013, 3, 1044–1052.
[12] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells, Nature 2005, 4, 455–459.
[13] L. Song, Y. Zhou, Y. Guan, P. Du, J. Xiong and F. Ko, Branched open-ended TiO2 nanotubes for improved efficiency of flexible dye-sensitized solar cells, J. Alloys Compd. 2017, 724, 1124–1133.
[14] X. Miao, K. Pan, Y. Liao, W. Zhou, Q. Pan and G. Wang, Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency, J. Mater. Chem. A 2013, 1, 9860–9861.
[15] X. Wu, G. Q. Lu and L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application, Energy Environ Sci. 2011, 4, 3565–3570.
[16] D. Chen, F. Huang, Y. B. Cheng and R. A. Caruso, Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells, Adv. Mater. 2009, 21, 2206–2210.
[17] D. Chen, L. Cao, F. Huang, P. Imperia, Y. B. Cheng and R. A. Caruso, Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm), J. Am. Chem. Soc. 2010, 132, 4438–4444.
[18] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 2010, 110, 6595–6663.
[19] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C 2003, 4, 145–153.
[20] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382–6390.
[21] M. K. Nazeeruddin, R. H. Baker, P. Liska and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B. 2003, 707, 8981–8987.
[22] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 727, 16835–16847.
[23] M. Grätzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res. 2009, 42, 1788–1798.
[24] M. K. Nazeeruddin, P. Péchy, T. Renouard. S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 2001, 123, 1613–1624.
[25] K. L. Wu, W. P. Ku, J. N. Clifford, E. Palomares, S. T. Ho, Y. Chi, S. H Liu, P. T Chou, M. K. Nazeeruddin and M. Grätzel, Harnessing the open-circuit voltage via a new series of Ru(II) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries, Energy Environ. Sci. 2013, 6, 859–870.
[26] Q. Wang, M. Li, X. Zhang, Y. Qin, J. Wang, J. Zhang, J. Hou, R. A. J. Janssen and Y. Geng, Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: The effect of chlorination on their properties, Macromolecules 2019, 52, 4464–4474.
[27] M. L. Tang, J. H. Oh, A. D. Reichardt and Z. Bao, Chlorination: A general route toward electron transport in organic semiconductors, J. Am. Chem. Soc. 2009, 131, 3733–3740.
[28] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, The halogen bond, Chem. Rev. 2016, 116, 2478–2601.
[29] K. C. D. Robson, K. Hu, G. J. Meyer and C. P. Berlinguette, Atomic level resolution of dye regeneration in the dye-sensitized solar cell, J. Am. Chem. Soc. 2013, 135, 1961–1971.
[30] S. J. C. Simon, F. G. L. Parlane, W. B. Swords, C. W. Kellett, C. Du, B. Lam, R. K. Dean, K. Hu, G. J. Meyer and C. P. Berlinguette, Halogen bonding promotes higher dye-sensitized solar cell photovoltages, J. Am. Chem. Soc. 2016, 138, 10406–10409.
[31] F. G. L. Parlane, C. Mustoe, C. W. Kellett, S. J. Simon, W. B. Swords, G. J. Meyer, P. Kennepohl and C. P. Berlinguette, Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell, Nat. Commun. 2017, 8, 1761.
[32] B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737–739.
[33] J. Cong, X. Yang, L. Kloo and L. Sun, Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells, Energy Environ. Sci. 2012, 5, 9180–9194.
[34] H. Tian and L. Sun, Iodine-free redox couples for dye-sensitized solar cells, J. Mater. Chem. 2011, 21, 10592–10601.
[35] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, J. Phys. Chem. B 2001, 105, 12809–12815.
[36] B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 2006, 90, 549–573.
[37] K. Fredin, J. Nissfolk, G. Boschloo and A. Hagfeldt, The influence of cations on charge accumulation in dye-sensitized solar cells, J. Electroanal. Chem. 2007, 609,55–60.
[38] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band, ACS Appl. Mater. Interfaces 2013, 5, 444–450.
[39] K. M. Son, M. G. Kang, R. Vittal, J. Lee and K. J. Kim, Effects of substituents of imidazolium cations on the performance of dye-sensitized TiO2 solar cells, J. Appl. Electrochem. 2008, 38, 1647–1652.
[40] Y. Liu, A. Hagfeldt, X. R. Xiao and S. E. Lindquist, Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell, Sol. Energy Mater. Sol. Cells 1998, 55, 267–281.
[41] Y. Shi, Y. Wang, M. Zhang and X. Dong, Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium, Phys. Chem. Chem. Phys. 2011, 13, 14590–14597.
[42] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability, J. Phys. Chem. C 2009, 113, 21779–21783.
[43] N. Kopidakis, N. R. Neale and A. J. Frank, Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation, J. Phys. Chem. B 2006, 110, 12485–12489.
[44] A. Kay and M. Grätzel, Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272–6277.
[45] M. K. Nazeeruddin, R. H. Baker, M. Grätzel, D. Wöhrle, G. Schnurpfeil, G. Schneider, A. Hirth and N. Trombach, Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines, J. Porphyr. Phthalocyanines 1999, 3, 230–237.
[46] J. J. He, G. Benkö, F. Korodi, T. Polívka, R. Lomoth, B. Åkermark, L. C. Sun, A. Hagfeldt and V. Sundström, Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode, J. Am. Chem. Soc. 2002, 124, 4922–4932.
[47] K. M. Lee, S. J. Wu, C. Y. Chen, C. G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka and K. C. Ho, Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer, J. Mater. Chem. 2009, 19, 5009–5015.
[48] D. V. Pogozhev, M. J. Bezdek, P. A. Schauer and C. P. Berlinguette, Ruthenium(II) complexes bearing a naphthalimide fragment: A modular dye platform for the dye-sensitized solar cell, Inorg. Chem. 2013, 52, 3001–3006.
[49] S. H. Aung, Y. Hao, T. Z. Oo and G. Boschloo, 2‑(4-Butoxyphenyl)‑ N‑hydroxyacetamide: An efficient preadsorber for dye-sensitized solar cells, ACS Omega 2017, 2, 1820–1825.
[50] Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells, Nature 2023, 613, 60–65.
[51] A. Hauch and A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochimica Acta. 2001, 46, 3457–3466.
[52] Q. Wang, J. E. Moser and M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, J. Phys. Chem. B 2005, 109, 14945–14953.
[53] C. Longo, A. F. Nogueira and M. A. D. Paoli, Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy, J. Phys. Chem. B 2002, 106, 5925–5930.
[54] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett. 2007, 7, 69–74.
[55] N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 2003, 107, 11307–11315.
[56] P. R. F. Barnes, A. Y. Anderson, M. Juozapavicius, L. Liu, X. Li, E. Palomares, A. Forneli and B. C. O′Regan, Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells, Phys. Chem. Chem. Phys. 2011, 13, 3547–3558.
[57] A. Tricoli, A. S. Wallerand and M. Righettoni, Highly porous TiO2 films for dye sensitized solar cells, J. Mater. Chem. 2012, 22, 14254–14261.
[58] R. Y. Huang, Y. H. Chiu, Y. H. Chang, K. Y. Chen, P. T. Huang, T. H. Chiang and Y. J. Chang, Influence of a D-π-A system through a linked unit of double and triple bonds in a triarylene bridge for dye-sensitised solar cells, New J. Chem. 2017, 41, 8016–8025.
[59] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Solar. Energ. Mat. Solar. C 2000, 64, 115–134.
[60] 崔順鈞,2024,國立中央大學化學研究所碩士學位論文(多聯吡啶釕錯合物光敏化染料的合成與性質探討)。
[61] S. Yanagida, Y. Yu and K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Acc. Chem. Res. 2009, 42, 1827–1838.
[62] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, Investigation of iodine concentration effects in electrolytes for dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 10612–10620.
[63] C. Y. Chen, Y. M. Feng, T. Y. Wu, Y. C. Liu, S. Y. Chen, T. Y. Lin, H. H. Tsai and C. G. Wu, Terpyridyl ruthenium complexes functionalized with conjugated heterocycles for panchromatic dye-sensitized solar cells, ACS Appl. Energy Mater. 2021, 4, 13461–13470.
[64] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. B 1997, 101, 10281–10289.
[65] J. Kruger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy, J. Phys. Chem. B 2003, 107, 7536–7539.
[66] G. Schlichthorl, N. G. Park and A. J. Frank, Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 1999, 103, 782–791.
[67] A. K. Chandiran, F. d. Sauvage, M. C. Cabanas, P. Comte, S. M. Zakeeruddin and M. Grätzel, Doping a TiO2 photoanode with Nb5+ to enhance transparency and charge collection efficiency in dye-sensitized solar cells, J. Phys. Chem. C 2010, 114, 15849–15856.
[68] L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen and A. I. Tsai, Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells, J. Org. Chem. 2010, 75, 4778–4785.
[69] S. G. Adhikari, J. R. Gascooke, A. S. Alotabi and G. G. Andersson, Anchoring modes of Ru-based N719 dye onto titania substrates, J. Phys. Chem. C 2024, 128, 3136–3147.
[70] H. Kusama and H. Arakawa, Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance, J. Photochem. Photobiol. A 2004, 162, 441–448.
[71] H. L. Lu, Y. H. Lee, S. T. Huang, C. Su and T. C. K. Yang, Influences of water in bis-benzimidazole-derivative electrolyte additives to the degradation of the dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 2011, 95, 158–162.
[72] F. Xu, T. T. Testoff, L. Wang and X. Zhou, Cause, regulation and utilization of dye aggregation in dye-sensitized solar cells, Molecules 2020, 25, 4478. |