博碩士論文 111324008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:18.219.207.11
姓名 陳郁軒(Yu-Hsuan Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 將相圖分析與製程設計結合:薑黃中薑黃素的萃取與純化案例
(Integrating Phase Diagram Analysis with Process Design: The Case of Curcumin Extraction and Purification from Turmeric)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 溶液結晶被廣泛認為是純化薑黃素的首選方法。然而,從該方法衍生的純化程序通常是在沒有正確了解薑黃素及其雜質的材料特性的情況下開發的。因此,本研究的目的是:(1)透過建構相圖來闡明薑黃素及其雜質的固態特性,以及(2)開發一種基於此的純化方法。
基於固態表徵,令人驚訝地發現薑黃素及其雜質去甲氧基薑黃素(DMC)和雙去甲氧基薑黃素(BDMC)形成固溶體,其被定義為具有相似晶格的兩種結晶固體的均勻混合物。由於薑黃素與DMC和BDMC的分子結構相似,這些雜質能夠滲透薑黃素的晶格空隙並破壞其晶格。這項發現解釋了為什麼先前的薑黃素純化研究儘管添加了反溶劑或使用了種子,但仍需要多個冷卻結晶步驟。
從薑黃中萃取薑黃素通常會產生含有純度為 25% 的薑黃素的固體。由於DMC和BDMC雜質的存在,固體與薑黃素形成固溶體,使得傳統的冷卻結晶方法無效。從建構的相圖來看,固-液平衡的方法被發現是合適的方法。但由於薑黃素的純度越高,固-固-液三元相圖中的聯絡線變得越垂直,顯示隨著固-液平衡階段的進行,純化效率降低。因此,僅用固-液平衡的方法不足以有效純化薑黃素。比較好的策略是用固液平衡從25% 的油樹脂中獲得純度高達80%的CUR,再利用冷卻結晶的方式將純度提升,直到提升至>98%。基於5個標準(1)達到>80%純度所需的階層、(2)固體產物的產率、(3)溶劑消耗量、(4) 溶劑的毒性、及(5)沸點,挑選出AZE(Water/EtOH/ACN)為最佳實驗溶劑,並按照策略進行。驚訝的發現僅需一次equilibrium-based就可以將純度從25到81.3%,產率為8.5%以及三次冷卻結晶將純度提升至94.4、97.2、98.2%,產率為39.4、53.3、60%。僅需4個階段即可從油樹脂中獲得98%的CUR 純度,而不是僅基於8個階段平衡。
摘要(英) Solution crystallization is widely regarded as the method of choice for the purification of curcumin. However, the purification procedures derived from this method were usually developed without a proper understanding of the material properties of curcumin and its impurities. Therefore, this research aims to: (1) elucidate the solid-state properties of curcumin and its impurities by the construction of phase diagram, and (2) develop a purification method based on it.
Based on the solid-state characterization, it was surprisingly revealed that curcumin and its impurities, desmethoxycurcumin (DMC) and bisdesmethoxycurcumin (BDMC), formed a solid solution, which is defined as a homogeneous mixture of two crystalline solids with similar lattices. Due to the similar molecular structures of curcumin with DMC and BDMC, those impurities are capable of infiltrating the lattice voids of curcumin and disrupt its lattice. This discovery answers why previous studies of curcumin purification always necessitates multiple cooling crystallization steps despite of the addition of antisolvent or the use of seed.
Extraction of curcumin from turmeric typically produced solids containing curcumin at 25% purity. Due to the presence of DMC and BDMC impurities, the solids formed a solid solution with curcumin, rendering the conventional method of cooling crystallization to be ineffective. By judging from the constructed phase diagram, solid-liquid equilibrium approach was found to be the suitable method. The higher the purity of curcumin, the more vertical the tie-line becomes in the solid-solid-liquid ternary phase diagram, indicating the reduced purification efficiency as the solid-liquid equilibrium stage progressed. Therefore, solid-liquid equilibrium method alone is insufficient to purify curcumin effectively. A better strategy is to obtain high-purity CUR from 25% oleoresin using solid-liquid equilibrium to achieve a purity of up to 80%, followed by cooling crystallization to further increase the purity to over 98%. Based on the five criteria of : (1) number of stages required to achieve the purity of > 80%, (2) yield of the solid product, (3) solvent consumption, (4) toxicity, and (5) boiling point, AZE(Water/EtOH/ACN) was selected as the optimal experimental solvent. Following the strategy, it was surprisingly discovered that only one equilibrium-based stage was required to increase the purity from 25% to 81.3%, with a yield of 8.5%. Three subsequent cooling crystallization stages raised the purity to 94.4%, 97.2%, and 98.2%, with yields of 39.4%, 53.3%, and 60%, respectively. Thus, only four stages are needed to obtain 98% purity CUR from oleoresin, as opposed to the previously assumed eight equilibrium stages.
關鍵字(中) ★ 薑黃素
★ 萃取
★ 固溶體
★ 共沸溶劑
★ 溶劑
關鍵字(英) ★ curcumin
★ extraction
★ solid solution
★ azeotrope
★ solvent
論文目次 摘要 i
Abstract iii
Acknowledgment v
Chapter 1 Introduction 1
1.1 Brief Introduction of Turmeric 1
1.1.1 Turmeric 1
1.1.2 Composition of Turmeric 1
1.2 Turmeric Extraction 3
1.3 Phase Diagram 6
1.4 Solid Solutions 9
1.5 Conceptual Framework 11
Chapter 2 Experiment Materials and Methods 12
2.1 Materials 12
2.1.1 Chemicals 12
2.1.2 Solvents 12
2.2 Experimental Methods 13
2.2.1 Preparation of Curcumin Standard 13
2.2.2 Preparation of the Positive Azeotropes 13
2.2.3 Investigation of the Presence of Solid Solution 14
2.2.4 Construction of Ternary Phase Diagram 15
2.2.5 Extraction and Purification of Curcumin from Turmeric 19
2.2.6 High Performance Liquid Chromatography (HPLC) 22
Chapter 3 Results and Discussion 24
3.1 Solid-State Properties of Curcuminoids 24
3.2 Solvent Selection Based on the Phase Diagram 29
3.2.1 Simplified Ternary Phase Diagrams of Different CUR Purity Levels 29
3.2.2 Solvent Selection 32
3.3 Extraction and Purification of Curcumin from Turmeric 40
3.3.1 Kinetic Study of Turmeric Extraction and Oleoresin Purification 40
3.3.2 Turmeric Extraction and Oleoresin Purification for Azeotrope 45
3.3.3 Turmeric Extraction and Oleoresin Purification for Pure Solvent 49
Chapter 4 Conclusion and Future Work 53
4.1 Conclusion 53
4.2 Future Work 55
References 56
參考文獻 (1) Li, S.; Yuan, W.; Deng, G.; Wang, P.; Yang, P.; Aggarwal, B. Chemical composition and product quality control of turmeric (Curcuma longa L.). 2011.
(2) Braga, M. E.; Leal, P. F.; Carvalho, J. E.; Meireles, M. A. A. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J. agric. food chem 2003, 51 (22), 6604-6611.
(3) Bangaraiah, P.; Ashok Kumar, P. EXTRACTION OF CURCUMIN FROM TURMERIC ROOTS. Int. J. Innov. Stud. 2013, 2.
(4) Zhang, R.; Li, S.; Zhu, Z.; He, J. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends Food Sci. Tech. 2019, 91, 467-482.
(5) Horosanskaia, E.; Yuan, L.; Seidel-Morgenstern, A.; Lorenz, H. Purification of curcumin from ternary extract-similar mixtures of curcuminoids in a single crystallization step. Crystals 2020, 10 (3), 206.
(6) Tripathy, S.; Verma, D. K.; Thakur, M.; Patel, A. R.; Srivastav, P. P.; Singh, S.; Gupta, A. K.; Chavez-Gonzalez, M. L.; Aguilar, C. N.; Chakravorty, N. Curcumin extraction, isolation, quantification and its application in functional foods: a review with a focus on immune enhancement activities and COVID-19. Front. nutr. 2021, 8, 747956.
(7) Popuri, A. K.; Pagala, B. Extraction of curcumin from turmeric roots. Int J Innovative Res. Stud. 2013, 2, 289-299.
(8) Shirsath, S.; Sable, S.; Gaikwad, S.; Sonawane, S.; Saini, D.; Gogate, P. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters. Ultrason. Sonochem. 2017, 38, 437-445.
(9) Wakte, P. S.; Sachin, B.; Patil, A.; Mohato, D.; Band, T.; Shinde, D. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Sep. Purif. Technol. 2011, 79 (1), 50-55.
(10) Xu, J.; Wang, W.; Liang, H.; Zhang, Q.; Li, Q. Optimization of ionic liquid based ultrasonic assisted extraction of antioxidant compounds from Curcuma longa L. using response surface methodology. Ind. Crops. Prod. 2015, 76, 487-493.
(11) Jacob, A.; Menon, V.; Paul, J.; Govindan, S. O.; Mathew, A. V. A Process for Extraction and Isolation of Curcuminoids.Pdf. WO 2018/020302 A1, February 1, 2018.
(12) Attwood, B. C.; Hall, C. K. Solid–liquid phase behavior of ternary mixtures. AIChE journal 2008, 54 (7), 1886-1894.
(13) Schott, H. A mathematical extrapolation for the method of wet residues. J. Chem. Eng. 1961, 6 (3), 324-324.
(14) Deng, Y.; Sun, X.; Xu, L.; Ma, Z.; Liu, G. Solid–liquid equilibrium and phase diagram for the ternary succinic acid+ glutaric acid+ water system. J. Chem. Eng. 2014, 59 (8), 2589-2594.
(15) Springuel, G.; Leyssens, T. Innovative chiral resolution using enantiospecific co-crystallization in solution. Cryst. Growth Des. 2012, 12 (7), 3374-3378.
(16) Pálovics, E.; Faigl, F.; Fogassy, E. Separation of the mixtures of chiral compounds by crystallization. Advances in Crystallization Processes 2012, 3.
(17) Menahem, T.; Pravda, M.; Mastai, Y. Correlation between structures of chiral polymers and their efficiency for chiral resolution by crystallization. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry 2009, 21 (9), 862-870.
(18) Dunn, A. S.; Svoboda, V.; Sefcik, J.; ter Horst, J. H. Resolution control in a continuous preferential crystallization process. Org. Process Res. Dev. 2019, 23 (9), 2031-2041.
(19) Buol, X.; Caro Garrido, C.; Robeyns, K.; Tumanov, N.; Collard, L.; Wouters, J.; Leyssens, T. Chiral resolution of mandelic acid through preferential cocrystallization with nefiracetam. Cryst. Growth Des. 2020, 20 (12), 7979-7988.
(20) Sánchez-Guadarrama, O.; Mendoza-Navarro, F.; Cedillo-Cruz, A.; Jung-Cook, H.; Arenas-García, J. I.; Delgado-Díaz, A.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Chiral resolution of RS-praziquantel via diastereomeric co-crystal pair formation with L-malic acid. Cryst. Growth Des. 2016, 16 (1), 307-314.
(21) Kodama, K.; Kimura, Y.; Shitara, H.; Yasutake, M.; Sakurai, R.; Hirose, T. Solvent‐induced chirality control in the enantioseparation of 1‐phenylethylamine via diastereomeric salt formation. Chirality 2011, 23 (4), 326-332.
(22) Kodama, K.; Nagata, J.; Kurozumi, N.; Shitara, H.; Hirose, T. Solvent-induced chirality switching in the enantioseparation of regioisomeric hydroxyphenylpropionic acids via diastereomeric salt formation with (1R, 2S)-2-amino-1, 2-diphenylethanol. Tetrahedron: Asymmetry 2017, 28 (3), 460-466.
(23) Simon, M.; Donnellan, P.; Glennon, B.; Jones, R. C. Resolution via Diastereomeric salt crystallization of ibuprofen lysine: ternary phase diagram studies. Chem. Eng. Technol. 2018, 41 (5), 921-927.
(24) Yang, Y.; Zhang, H.; Du, S.; Chen, M.; Xu, S.; Jia, L.; Gong, J. Ternary phase diagram and the formation mechanism of two distinct solid solutions of amino acid systems: L-Valine/L-norvaline and L-valine/L-alanine. J. Chem. Thermodyn. 2018, 119, 34-43.
(25) Kamei, T.; Hasegawa, K.; Kashiwagi, T.; Suzuki, E.; Yokota, M.; Doki, N.; Shimizu, K. Solid− Liquid Equilibria in an l-Isoleucine+ l-Alanine+ Water System. J. Chem. Eng. 2008, 53 (12), 2801-2806.
(26) Pratama, D. E.; Huang, C.-Y.; Lee, T. A Mathematically Simplified Solid–Solid–Liquid Ternary Phase Diagram with Tie-Lines for Early Process Development Validated by Chiral Resolution of Racemic Ibuprofen. Ind. Eng. Chem. Res. 2024.
(27) Münzberg, S.; Lorenz, H.; Seidel‐Morgenstern, A. Multistage countercurrent crystallization for the separation of solid solutions. Chem. Eng. Technol. 2016, 39 (7), 1242-1250.
(28) Corvis, Y.; Guiblin, N.; Négrier, P.; Marenco, I.; Dembele, O.; Espeau, P. Scalemic mixtures preparation for optimized composition of ibuprofen solid dosage forms. Eur. J. Pharm. Biopharm. 2021, 169, 91-96.
(29) Dwivedi, S.; Sattari, S.; Jamali, F.; Mitchell, A. Ibuprofen racemate and enantiomers: phase diagram, solubility and thermodynamic studies. Int. J. Pharm. 1992, 87 (1-3), 95-104.
(30) Marc, L.; Lopes, C.; Schneider, J.-M.; Sanselme, M.; Coquerel, G. Impact of a partial solid solution and water molecules on the formation of fibrous crystals and fluid inclusions. Crystals 2021, 11 (10), 1188.
(31) Ebbers, E. J.; Plum, B. J.; Ariaans, G. J.; Kaptein, B.; Broxterman, Q. B.; Bruggink, A.; Zwanenburg, B. New resolving bases for ibuprofen and mandelic acid: qualification by binary phase diagrams. Tetrahedron: Asymmetry 1997, 8 (24), 4047-4057.
(32) Ukrainczyk, M.; Hodnett, B. K.; Rasmuson, Å. C. Process parameters in the purification of curcumin by cooling crystallization. Org. Process Res. Dev. 2016, 20 (9), 1593-1602.
(33) Liu, J.; Svärd, M.; Hippen, P.; Rasmuson, Å. C. Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin. J. Pharm. Sci. 2015, 104 (7), 2183-2189.
(34) De Tseng, J.; Lee, H. L.; Yeh, K. L.; Lee, T. Recyclable positive azeotropes for the purification of curcumin with optimum purity and solvent capacity. Chem. Eng. Res. Des. 2022, 180, 200-211.
(35) Olbrycht, M.; Balawejder, M.; Poplewska, I.; Lorenz, H.; Seidel-Morgenstern, A.; Pia̧tkowski, W.; Antos, D. Cooperative kinetic model to describe crystallization in solid solution forming systems. Cryst. Growth Des. 2019, 19 (3), 1786-1796.
(36) Mohajerani, S. S.; Ricci, F.; Nordstrom, F. L. Solubility enhancements through crystalline solid solutions, the non-linear Tammann diagram and the T–X phase diagram of salicylic acid–benzoic acid. CrystEngComm 2023, 25 (17), 2607-2617.
(37) Jacques, J.; Collet, A.; Wilen, S. H.; Collet, A. Enantiomers, racemates, and resolutions; Wiley New York, 1981.
(38) Ahmad, N.; Ahmad, I.; Umar, S.; Iqbal, Z.; Samim, M.; Ahmad, F. J. RETRACTED ARTICLE: PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv. 2016, 23 (7), 2095-2114.
(39) Guideline, I. H. T. Impurities: Guideline for residual solvents Q3C (R5). Current Step 2005, 4, 1-25.
指導教授 李度(Tu Lee) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明