參考文獻 |
Benoit, M., Layat, E., Tourmente, S., & Probst, A. V. (2013). Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene, 526(1), 39-45. https://doi.org/10.1016/j.gene.2013.01.060
Bontinck, M., Van Leene, J., Gadeyne, A., De Rybel, B., Eeckhout, D., Nelissen, H., & De Jaeger, G. (2018). Recent Trends in Plant Protein Complex Analysis in a Developmental Context. Front Plant Sci, 9, 640. https://doi.org/10.3389/fpls.2018.00640
Branon, T. C., Bosch, J. A., Sanchez, A. D., Udeshi, N. D., Svinkina, T., Carr, S. A., Feldman, J. L., Perrimon, N., & Ting, A. Y. (2018). Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 36(9), 880-887. https://doi.org/10.1038/nbt.4201
Clapier, C. R., Iwasa, J., Cairns, B. R., & Peterson, C. L. (2017). Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature Reviews Molecular Cell Biology, 18(7), 407-422. https://doi.org/10.1038/nrm.2017.26
Du, J., Gao, Y., Zhan, Y., Zhang, S., Wu, Y., Xiao, Y., Zou, B., He, K., Gou, X., & Li, G. (2016). Nucleocytoplasmic trafficking is essential for BAK 1‐and BKK 1‐mediated cell‐death control. The Plant Journal, 85(4), 520-531.
Du, J. L., Zhang, S. W., Huang, H. W., Cai, T., Li, L., Chen, S., & He, X. J. (2015). The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis. Mol Plant, 8(7), 1053-1068. https://doi.org/10.1016/j.molp.2015.02.003
Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol, 61, 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R., & Schubert, I. (2002). Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proceedings of the National Academy of Sciences, 99(22), 14584-14589.
Godwin, J., & Farrona, S. (2022). The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. Epigenomes, 6(1). https://doi.org/10.3390/epigenomes6010008
Godwin, J., Govindasamy, M., Nedounsejian, K., March, E., Halton, R., Bourbousse, C., Wolff, L., Fort, A., Krzyszton, M., López Corrales, J., Swiezewski, S., Barneche, F., Schubert, D., & Farrona, S. (2024). The UBP5 histone H2A deubiquitinase counteracts PRCs-mediated repression to regulate Arabidopsis development. Nat Commun, 15(1), 667. https://doi.org/10.1038/s41467-023-44546-8
Groves, N. R., Biel, A., Moser, M., Mendes, T., Amstutz, K., & Meier, I. (2020). Recent advances in understanding the biological roles of the plant nuclear envelope. Nucleus, 11(1), 330-346. https://doi.org/10.1080/19491034.2020.1846836
Guo, J., Cai, G., Li, Y. Q., Zhang, Y. X., Su, Y. N., Yuan, D. Y., Zhang, Z. C., Liu, Z. Z., Cai, X. W., Guo, J., Li, L., Chen, S., & He, X. J. (2022). Comprehensive characterization of three classes of Arabidopsis SWI/SNF chromatin remodelling complexes. Nat Plants, 8(12), 1423-1439. https://doi.org/10.1038/s41477-022-01282-z
Han, D., Chen, C., Xia, S., Liu, J., Shu, J., Nguyen, V., Lai, J., Cui, Y., & Yang, C. (2021). Chromatin-associated SUMOylation controls the transcriptional switch between plant development and heat stress responses. Plant Commun, 2(1), 100091. https://doi.org/10.1016/j.xplc.2020.100091
Heitz, E. (1928). “Das” Heterochromatin der Moose. Bornträger.
Li, N., Euring, D., Cha, J. Y., Lin, Z., Lu, M., Huang, L. J., & Kim, W. Y. (2020). Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Front Plant Sci, 11, 627969. https://doi.org/10.3389/fpls.2020.627969
Maejima, Y., & Sadoshima, J. (2014). SUMOylation: a novel protein quality control modifier in the heart. Circ Res, 115(8), 686-689. https://doi.org/10.1161/circresaha.114.304989
Mair, A., Xu, S.-L., Branon, T. C., Ting, A. Y., & Bergmann, D. C. (2019). Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife, 8, e47864. https://doi.org/10.7554/eLife.47864
Mesihovic, A., Iannacone, R., Firon, N., & Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant Reprod, 29(1-2), 93-105. https://doi.org/10.1007/s00497-016-0281-y
Okanami, M., Meshi, T., & Iwabuchi, M. (1998). Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res, 26(11), 2638-2643. https://doi.org/10.1093/nar/26.11.2638
Pavet, V., Quintero, C., Cecchini, N. M., Rosa, A. L., & Alvarez, M. E. (2006). Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Molecular Plant-Microbe Interactions, 19(6), 577-587.
Pawloski, L. C., Deal, R. B., McKinney, E. C., Burgos-Rivera, B., & Meagher, R. B. (2005). Inverted repeat PCR for the rapid assembly of constructs to induce RNA interference. Plant Cell Physiol, 46(11), 1872-1878. https://doi.org/10.1093/pcp/pci191
Petricka, J. J., & Nelson, T. M. (2007). Arabidopsis nucleolin affects plant development and patterning. Plant Physiol, 144(1), 173-186. https://doi.org/10.1104/pp.106.093575
Sangwan, V., Orvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J, 31(5), 629-638. https://doi.org/10.1046/j.1365-313x.2002.01384.x
Savchenko, G. E., Klyuchareva, E. A., Abramchik, L. M., & Serdyuchenko, E. V. (2002). Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts. Russian Journal of Plant Physiology, 49(3), 349-359. https://doi.org/10.1023/A:1015592902659
Schöffl, F., Prandl, R., & Reindl, A. (1999). Molecular responses to heat stress. Molecular responses to cold, drought, heat and salt stress in higher plants, 83(93).
Struk, S., Jacobs, A., Sánchez Martín-Fontecha, E., Gevaert, K., Cubas, P., & Goormachtig, S. (2019). Exploring the protein-protein interaction landscape in plants. Plant Cell Environ, 42(2), 387-409. https://doi.org/10.1111/pce.13433
Tessadori, F., Chupeau, M.-C., Chupeau, Y., Knip, M., Germann, S., van Driel, R., Fransz, P., & Gaudin, V. (2007). Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. Journal of cell science, 120(7), 1200-1208.
Tessadori, F., Chupeau, M. C., Chupeau, Y., Knip, M., Germann, S., van Driel, R., Fransz, P., & Gaudin, V. (2007). Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci, 120(Pt 7), 1200-1208. https://doi.org/10.1242/jcs.000026
Tessadori, F., Schulkes, R. K., Driel, R. v., & Fransz, P. (2007). Light‐regulated large‐scale reorganization of chromatin during the floral transition in Arabidopsis. The Plant Journal, 50(5), 848-857.
Tessadori, F., Schulkes, R. K., van Driel, R., & Fransz, P. (2007). Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J, 50(5), 848-857. https://doi.org/10.1111/j.1365-313X.2007.03093.x
Trenner, J., Monaghan, J., Saeed, B., Quint, M., Shabek, N., & Trujillo, M. (2022). Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. Annu Rev Plant Biol, 73, 93-121. https://doi.org/10.1146/annurev-arplant-102720-012310
van Zanten, M., Koini, M. A., Geyer, R., Liu, Y., Brambilla, V., Bartels, D., Koornneef, M., Fransz, P., & Soppe, W. J. J. (2011). Seed maturation in <i>Arabidopsis thaliana</i> is characterized by nuclear size reduction and increased chromatin condensation. Proceedings of the National Academy of Sciences, 108(50), 20219-20224. https://doi.org/doi:10.1073/pnas.1117726108
Vierstra, R. D. (2009). The ubiquitin–26S proteasome system at the nexus of plant biology. Nature Reviews Molecular Cell Biology, 10(6), 385-397. https://doi.org/10.1038/nrm2688
Wang, Wu, J.-R., Chang, W.-L., Yeh, C.-H., Ke, Y.-T., Lu, C.-A., & Wu, S.-J. (2013). Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. Journal of Experimental Botany, 64(6), 1689-1701. https://doi.org/10.1093/jxb/ert030
Wang, H., Dittmer, T. A., & Richards, E. J. (2013). Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biology, 13(1), 200. https://doi.org/10.1186/1471-2229-13-200
Wang, L. C., Wu, J. R., Hsu, Y. J., & Wu, S. J. (2015). Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress. New Phytol, 205(2), 544-554. https://doi.org/10.1111/nph.13088
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Wiborg, J., O′Shea, C., & Skriver, K. (2008). Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem J, 413(3), 447-457. https://doi.org/10.1042/bj20071568
Zhang, Q., Wang, Z., Lu, X., Yan, H., Zhang, H., He, H., Bischof, S., Harris, C. J., & Liu, Q. (2023). DDT-RELATED PROTEIN4–IMITATION SWITCH alters nucleosome distribution to relieve transcriptional silencing in Arabidopsis. The Plant Cell, 35(8), 3109-3126. https://doi.org/10.1093/plcell/koad143
Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., & Chua, N. H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 1(2), 641-646. https://doi.org/10.1038/nprot.2006.97
Zhang, Y., Sun, Z., Jia, J., Du, T., Zhang, N., Tang, Y., Fang, Y., & Fang, D. (2021). Overview of histone modification. Histone Mutations and Cancer, 1-16.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., . . . Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A, 114(35), 9326-9331. https://doi.org/10.1073/pnas.1701762114 |