博碩士論文 111821018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.145.8.139
姓名 王傑民(Chieh-Min Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 內質網靶向藥物L-硒胱胺酸破壞蛋白質平衡並誘導大腸直腸癌細胞發生免疫原性細胞死亡
(ER-targeting agent L-selenocystine sabotages proteostasis and induces immunogenic cell death in colorectal carcinoma)
相關論文
★ 雙酚混合物對斑馬魚胚胎心跳減緩的影響:鈣離子幫浦與鈣離子通道的參與★ 自然殺手細胞過繼免疫療法延長低度遠端轉移乳癌小鼠的生存期及增強肺部樹突狀細胞和 T 細胞的活化
★ 研究PM2.5引起腸道細胞不良反應的相關機制:氧化壓力調控引起發炎反應、細胞增生以及細胞自噬的產生★ 環狀BMP-2肽對肌原細胞中BMP-2蛋白信號的上調
★ 左旋硒代胱胺酸抑制Nrf2與細胞自噬訊息途徑導致Nrf2成癮的結直腸癌細胞死亡★ PM2.5 暴露對人類結腸腺癌 Caco-2 細胞的不良影響 -氧化壓力、發炎、細胞增殖及自噬損傷
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-4以後開放)
摘要(中) 腫瘤細胞於腫瘤微環境中面臨各式壓力,如氧化壓力、缺氧和營養物質缺乏等,這些壓力可能會破壞蛋白質平衡並導致內質網壓力(ER stress)發生。為了存活,腫瘤細胞必須活化相應的訊息傳導途徑以抵抗壓力,例如在許多固體腫瘤中有觀察到活化的未折疊蛋白反應(unfolded protein response, UPR),得以幫助腫瘤細胞紓解壓力並促進存活。然而, UPR 活化雖有助於腫瘤細胞在輕度或中度 ER stress下恢復,但過於嚴重或持久的 ER stress反而會引發細胞程序性死亡,如細胞凋亡(apoptosis)或類凋亡(paraptosis)。在腫瘤細胞中,ER stress誘導之paraptosis被認為是一種免疫原性ex細胞死亡(immunogenic cell death, ICD),其透過釋放Damage-associated molecular patterns(DAMPs)和細胞因子(cytokines)來激發抗腫瘤免疫能力。藉由增加腫瘤細胞的ER stress,使之超過可承受閾值進而誘導ICD發生,是一種具有前景的癌症治療策略。硒元素已被證明能誘導多種癌細胞產生ER stress和細胞凋亡而不會傷害非癌細胞,這使得含硒化合物成為合適的潛在化療藥物。然而,硒元素對癌細胞及非癌細胞的相異反應,以及硒介導的ER stress在誘導ICD中的作用仍不明確。
於此研究中,我們探討L-硒胱胺酸(SeC)對大腸直腸癌(CRC)細胞和非大腸直腸癌細胞的影響。我們的研究結果表明,SeC 處理使得IRE1途徑活化並誘導了CRC 細胞發生ER stress介導的細胞凋亡,並且這些情形在非CRC 細胞中沒有發生。CRC 細胞中,IRE1敲落加劇了SeC誘導之細胞死亡,表明在嚴重的ER stress下的細胞死亡仍有其他途徑參調控。 SeC 透過活性氧介導(ROS-mediated)機制抑制了 CRC 細胞中蛋白酶體的活性,導致多泛素化(ubiquitinated)蛋白的累積。 此外,SeC 還促進了 ICD 因子的釋放、造成 ER 形態改變,並誘導了廣泛的細胞質空洞化(extensive cytoplasmic vacuolization),這些現象表明蛋白質平衡遭受破壞並發生paraptosis,從而可能激發抗腫瘤免疫反應。經過SeC 處理的 CRC 細胞中,其ER衍生囊泡內的硒元素含量增加,且ER區域性的 ROS 增加,這意味著 SeC 可能在進入細胞後直接進入並干擾 ER。我們的研究結果為SeC 的選擇性抗癌分子機制提供了見解,並對SeC 在癌症治療中的精準應用提供前瞻指引。
摘要(英) Tumor cells face various microenvironmental stresses, such as oxidative stress and deprivation of oxygen and nutrients, which could disrupt protein homeostasis and induce endoplasmic reticulum (ER) stress. To survive, tumor cells must activate adaptive pathways, including the upregulation of unfolded protein response (UPR) observed in many solid tumors, which helps resolve stress and promote survival. While UPR activation aids tumor cells in the recovery of mild or moderate ER stress, severe or prolonged ER stress can instead trigger programmed cell death, e.g. apoptosis or paraptosis. In tumor cells, ER stress-induced paraptosis is regarded as a form of immunogenic cell death (ICD), releasing damage-associated molecular patterns (DAMPs) and cytokines that stimulate anti-tumor immunity. Inducing ICD by surpassing tumor cells’ ER stress threshold emerges as a promising cancer treatment strategy. Selenium (Se) has been shown to induce ER stress and apoptosis in many cancer types without harming non-cancerous cells, rendering selenium-containing compounds potential chemotherapeutic agents. However, the differential impacts of Se on cancer versus non-cancerous cells, and the role of Se-mediated ER stress in ICD induction, remain poorly understood.
In this study, we investigated the effects of L-selenocystine (SeC) on colorectal cancer (CRC) cells compared to non-CRC cells. Our findings demonstrated that SeC treatment activated the IRE1 pathway and induced ER stress-mediated apoptosis in CRC cells, but not non-CRC cells. IRE1 knockdown exacerbated SeC-induced cell death in CRC cells, suggesting alternative pathways contributing to cell death under severe ER stress. SeC inhibited proteasome activity via ROS-mediated mechanisms in CRC cells, leading to polyubiquitinated protein accumulation. Moreover, SeC promoted the release of ICD factors, altered ER morphology, and induced extensive cytoplasmic vacuolization, indicating disruption of protein homeostasis and induction of paraptosis, which could enhance anti-tumor immune responses. Elevated selenium contents within the ER-derived vesicles and ER-localized ROS in SeC-treated CRC cells implied direct ER perturbation by SeC. Our findings provide insights into the molecular mechanisms underlying the selective anti-cancer effects of SeC, offering prospects for its precise application in cancer therapy.
關鍵字(中) ★ 硒
★ 硒胱胺酸
★ 內質網壓力
★ 蛋白質平衡
★ 類凋亡
★ 免疫原性細胞死亡
關鍵字(英) ★ selenium
★ selenocystine
★ endoplasmic reticulum stress
★ proteostasis
★ paraptosis
★ immunogenic cell death
論文目次 中文摘要 i
Abstract iii
Acknowledgment v
Abbreviations ix
I. Introduction 1
I.1. Role of chemotherapy in colorectal cancer treatment 1
I.2. Selenium 2
Selenocystine 3
I.3. Endoplasmic reticulum stress and unfolded protein response 3
Inositol-requiring enzyme 1 (IRE1) pathway 4
Protein kinase RNA-like ER kinase (PERK) pathway 4
C/EBP homologous binding protein (CHOP) 5
I.4. Proteostasis 6
Ubiquitin-proteasome system 7
I.5. Paraptosis 8
I.6. Immunogenic cell death 8
II. Objective Aims 10
III. Materials and Methods 11
III.1. Materials 11
Cell lines 11
Reagents and chemicals 11
Antibodies 15
Primer sequences 16
III.2. Methods 18
Cell culture 18
Selenocystine preparation 18
Protein extraction and Western blotting 18
Proteasome activity assay 19
Glutathione ratio detection assay 20
Cell viability assay 20
Intracellular ROS determination 21
Apoptosis assay 21
Fluorescent imaging 21
siRNA transfection 22
RNA extraction and quantitative real-time reverse transcription PCR 22
Microsome purification 23
Cryo-soft X-ray tomography 24
Statistical analysis 24
IV. Results 26
IV.1. SeC induced ROS-mediated and apoptotic cell death in CRC cells 26
IV.2. SeC provoked unrecoverable ER stress in CRC cells 27
IV.3. IRE1 pathway protects cells from SeC-induced ER stress 28
IV.4. SeC sabotaged protein degradation in CRC cells 28
IV.5. SeC accumulated in ER and increased ER-localized ROS in CRC cells 29
IV.6. SeC induces paraptosis and upregulates ICD cytokines in CRC cells 30
V. Figures 33
Figure 1. SeC induced oxidative stress and cell death in CRC cells but not in non-CRC cells. 38
Figure 2. SeC induced ER stress and hampered pro-survival signals in CRC cells. 42
Figure 3. Silencing IRE1 aggravated cell death under SeC treatment. 44
Figure 4. SeC inhibited proteasome activity in CRC cells, to an accumulation of poly-ubiquitinated proteins. 46
Figure 5. Increased selenium levels and ER-localized ROS were observed in WiDr cells after SeC treatment. 50
Figure 6. SeC disrupted ER structure and induced cytoplasmic vacuolization as well as the expression of ICD factors in WiDr cells, but not in CCD841-CoN cells. 55
Figure 7. Graphical summary and conclusion 56
VI. Discussion 57
VI.1. Fate of cell under ER stress—Survival or death 57
VI.2. Role of IRE1 activation under ER stress 58
VI.3. Immunogenic cell death in cancer therapy 59
VI.4. The potential mechanisms of SeC-import 60
VII. Conclusion 63
VIII. Future prospects 65
IX. Appendix 67
X. References 73
參考文獻 1. Alzahrani, S.M., H.A. Al Doghaither, and A.B. Al-Ghafari, General insight into cancer: An overview of colorectal cancer (Review). Mol Clin Oncol, 2021. 15(6): p. 271.
2. Organization, W.H. Colorectal cancer. 2023; Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer.
3. Colucci, G., et al., Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell′Italia Meridionale. J Clin Oncol, 2005. 23(22): p. 4866-75.
4. Goldberg, R.M., et al., A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol, 2004. 22(1): p. 23-30.
5. Xie, Y.H., Y.X. Chen, and J.Y. Fang, Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther, 2020. 5(1): p. 22.
6. Stein, A., et al., Immuno-oncology in GI tumours: Clinical evidence and emerging trials of PD-1/PD-L1 antagonists. Crit Rev Oncol Hematol, 2018. 130: p. 13-26.
7. Kang, D., et al., The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med, 2020. 52(8): p. 1198-1208.
8. Rayman, M.P., Selenium and human health. Lancet, 2012. 379(9822): p. 1256-68.
9. Howard, M.T., et al., Translational redefinition of UGA codons is regulated by selenium availability. J Biol Chem, 2013. 288(27): p. 19401-13.
10. Shrimali, R.K., et al., Selenoprotein expression is essential in endothelial cell development and cardiac muscle function. Neuromuscul Disord, 2007. 17(2): p. 135-42.
11. Kim, H.Y. and V.N. Gladyshev, Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. PLoS Biol, 2005. 3(12): p. e375.
12. Lu, J. and A. Holmgren, Selenoproteins. J Biol Chem, 2009. 284(2): p. 723-7.
13. Carlisle, A.E., et al., Selenium detoxification is required for cancer-cell survival. Nat Metab, 2020. 2(7): p. 603-611.
14. Lee, N., A.E. Carlisle, and D. Kim, Examining xCT-mediated selenium uptake and selenoprotein production capacity in cells. Methods Enzymol, 2022. 662: p. 1-24.
15. Olm, E., et al., Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci U S A, 2009. 106(27): p. 11400-5.
16. Burk, R.F. and K.E. Hill, Regulation of Selenium Metabolism and Transport. Annu Rev Nutr, 2015. 35: p. 109-34.
17. Rayman, M.P., Selenium intake, status, and health: a complex relationship. Hormones (Athens), 2020. 19(1): p. 9-14.
18. Wrobel, J.K., R. Power, and M. Toborek, Biological activity of selenium: Revisited. IUBMB Life, 2016. 68(2): p. 97-105.
19. Hsu, W.L., et al., Blockage of Nrf2 and autophagy by L-selenocystine induces selective death in Nrf2-addicted colorectal cancer cells through p62-Keap-1-Nrf2 axis. Cell Death Dis, 2022. 13(12): p. 1060.
20. Vinceti, M., et al., Selenium for preventing cancer. Cochrane Database Syst Rev, 2018. 1(1): p. CD005195.
21. Wahyuni, E.A., et al., Selenocystine induces oxidative-mediated DNA damage via impairing homologous recombination repair of DNA double-strand breaks in human hepatoma cells. Chem Biol Interact, 2022. 365: p. 110046.
22. Chen, T. and Y.S. Wong, Selenocystine induces apoptosis of A375 human melanoma cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cell Mol Life Sci, 2008. 65(17): p. 2763-75.
23. Fan, C., et al., Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis, 2014. 5(4): p. e1191.
24. Cao, L., et al., Selenite induced breast cancer MCF7 cells apoptosis through endoplasmic reticulum stress and oxidative stress pathway. Chem Biol Interact, 2021. 349: p. 109651.
25. Fontana, F., et al., The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer, 2020. 1873(2): p. 188338.
26. Wallenberg, M., et al., Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med, 2014. 18(4): p. 671-84.
27. Chen, T. and Y.S. Wong, Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother, 2009. 63(2): p. 105-13.
28. Long, M., et al., Selenocystine-induced cell apoptosis and S-phase arrest inhibit human triple-negative breast cancer cell proliferation. In Vitro Cell Dev Biol Anim, 2015. 51(10): p. 1077-84.
29. Li, L., et al., Chemopreventive activity of selenocysteine prodrugs against tobacco-derived nitrosamine (NNK) induced lung tumors in the A/J mouse. J Biochem Mol Toxicol, 2005. 19(6): p. 396-405.
30. Almanza, A., et al., Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J, 2019. 286(2): p. 241-278.
31. Corazzari, M., et al., Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Front Oncol, 2017. 7: p. 78.
32. Urra, H., et al., Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends Cancer, 2016. 2(5): p. 252-262.
33. Gorman, A.M., et al., Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther, 2012. 134(3): p. 306-16.
34. Tabas, I. and D. Ron, Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol, 2011. 13(3): p. 184-90.
35. Cubillos-Ruiz, J.R., S.E. Bettigole, and L.H. Glimcher, Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell, 2017. 168(4): p. 692-706.
36. Yadav, R.K., et al., Endoplasmic reticulum stress and cancer. J Cancer Prev, 2014. 19(2): p. 75-88.
37. Lin, Y., et al., Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother, 2019. 118: p. 109249.
38. Harding, H.P., Y. Zhang, and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999. 397(6716): p. 271-4.
39. Mori, K., et al., A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell, 1993. 74(4): p. 743-56.
40. Walter, P. and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011. 334(6059): p. 1081-6.
41. Bertolotti, A., et al., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol, 2000. 2(6): p. 326-32.
42. Cox, J.S., C.E. Shamu, and P. Walter, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993. 73(6): p. 1197-206.
43. Tirasophon, W., A.A. Welihinda, and R.J. Kaufman, A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev, 1998. 12(12): p. 1812-24.
44. Wang, X.Z., et al., Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J, 1998. 17(19): p. 5708-17.
45. Calfon, M., et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 2002. 415(6867): p. 92-6.
46. Cox, J.S. and P. Walter, A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell, 1996. 87(3): p. 391-404.
47. Sidrauski, C. and P. Walter, The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell, 1997. 90(6): p. 1031-9.
48. Han, J., et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol, 2013. 15(5): p. 481-90.
49. Lin, J.H., et al., IRE1 signaling affects cell fate during the unfolded protein response. Science, 2007. 318(5852): p. 944-9.
50. Harding, H.P., et al., Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol, 2002. 18: p. 575-99.
51. Patil, C. and P. Walter, Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol, 2001. 13(3): p. 349-55.
52. Hamanaka, R.B., et al., PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell, 2005. 16(12): p. 5493-501.
53. Jousse, C., et al., Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. J Cell Biol, 2003. 163(4): p. 767-75.
54. Rozpedek, W., et al., The Role of the PERK/eIF2alpha/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr Mol Med, 2016. 16(6): p. 533-44.
55. Li, Y., et al., New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai), 2015. 47(2): p. 146-7.
56. Mukherjee, D., et al., Regulation of cellular immunity by activating transcription factor 4. Immunol Lett, 2020. 228: p. 24-34.
57. Hirsch, I., et al., ERp29 deficiency affects sensitivity to apoptosis via impairment of the ATF6-CHOP pathway of stress response. Apoptosis, 2014. 19(5): p. 801-15.
58. Oyadomari, S., et al., Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest, 2002. 109(4): p. 525-32.
59. Hata, A.N., J.A. Engelman, and A.C. Faber, The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discov, 2015. 5(5): p. 475-87.
60. Iurlaro, R. and C. Munoz-Pinedo, Cell death induced by endoplasmic reticulum stress. FEBS J, 2016. 283(14): p. 2640-52.
61. Tsukano, H., et al., The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol, 2010. 30(10): p. 1925-32.
62. Hu, H., et al., The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol, 2018. 9: p. 3083.
63. Tuzlak, S., T. Kaufmann, and A. Villunger, Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Genes Dev, 2016. 30(19): p. 2133-2151.
64. Wei, M.C., et al., Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 2001. 292(5517): p. 727-30.
65. Balch, W.E., et al., Adapting proteostasis for disease intervention. Science, 2008. 319(5865): p. 916-9.
66. Anelli, T. and R. Sitia, Protein quality control in the early secretory pathway. EMBO J, 2008. 27(2): p. 315-27.
67. Bonifacino, J.S. and B.S. Glick, The mechanisms of vesicle budding and fusion. Cell, 2004. 116(2): p. 153-66.
68. Walter, P. and G. Blobel, Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol, 1981. 91(2 Pt 1): p. 557-61.
69. Braakman, I. and D.N. Hebert, Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol, 2013. 5(5): p. a013201.
70. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002. 82(2): p. 373-428.
71. Hetz, C. and F.R. Papa, The Unfolded Protein Response and Cell Fate Control. Mol Cell, 2018. 69(2): p. 169-181.
72. Schubert, U., et al., Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature, 2000. 404(6779): p. 770-4.
73. Hetz, C., E. Chevet, and S.A. Oakes, Proteostasis control by the unfolded protein response. Nat Cell Biol, 2015. 17(7): p. 829-38.
74. Werner, E.D., J.L. Brodsky, and A.A. McCracken, Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13797-801.
75. Schwartz, A.L. and A. Ciechanover, Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol, 2009. 49: p. 73-96.
76. Rodrigo-Brenni, M.C. and D.O. Morgan, Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell, 2007. 130(1): p. 127-39.
77. Bard, J.A.M., et al., Structure and Function of the 26S Proteasome. Annu Rev Biochem, 2018. 87: p. 697-724.
78. Manasanch, E.E. and R.Z. Orlowski, Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol, 2017. 14(7): p. 417-433.
79. Plemper, R.K. and D.H. Wolf, Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci, 1999. 24(7): p. 266-70.
80. Sitia, R. and I. Braakman, Quality control in the endoplasmic reticulum protein factory. Nature, 2003. 426(6968): p. 891-4.
81. Rutkowski, D.T. and R.J. Kaufman, A trip to the ER: coping with stress. Trends Cell Biol, 2004. 14(1): p. 20-8.
82. Hitomi, J., et al., Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol, 2004. 165(3): p. 347-56.
83. Nakagawa, T., et al., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000. 403(6765): p. 98-103.
84. Sperandio, S., et al., Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ, 2004. 11(10): p. 1066-75.
85. Hanson, S., et al., Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol, 2023. 14: p. 1159409.
86. Sperandio, S., I. de Belle, and D.E. Bredesen, An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A, 2000. 97(26): p. 14376-81.
87. Kim, S.H., et al., The hsp70 inhibitor VER155008 induces paraptosis requiring de novo protein synthesis in anaplastic thyroid carcinoma cells. Biochem Biophys Res Commun, 2014. 454(1): p. 36-41.
88. Yoon, M.J., et al., Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. Cell Death Dis, 2014. 5(3): p. e1112.
89. Mandula, J.K., et al., Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 2022. 40(10): p. 1145-1160 e9.
90. Seo, M.J., et al., Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis, 2023. 14(1): p. 42.
91. Yoon, M.J., et al., Simultaneous mitochondrial Ca(2+) overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett, 2012. 324(2): p. 197-209.
92. Wu, D., et al., Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis, 2023. 14(7): p. 473.
93. Zheng, R.R., et al., Paraptosis Inducer to Effectively Trigger Immunogenic Cell Death for Metastatic Tumor Immunotherapy with IDO Inhibition. ACS Nano, 2023. 17(11): p. 9972-9986.
94. Kroemer, G., et al., Immunogenic cell stress and death. Nat Immunol, 2022. 23(4): p. 487-500.
95. Mardi, A., et al., Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; Combination of Oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int, 2022. 22(1): p. 168.
96. Lin, S.Y., et al., Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance. Autophagy, 2018. 14(5): p. 778-795.
97. Solari, J.I.G., et al., Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer, 2020. 20(1): p. 474.
98. Givord, C., et al., Activation of the endoplasmic reticulum stress sensor IRE1alpha by the vaccine adjuvant AS03 contributes to its immunostimulatory properties. NPJ Vaccines, 2018. 3: p. 20.
99. Krysko, D.V., et al., Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer, 2012. 12(12): p. 860-75.
100. van Vliet, A.R., A.D. Garg, and P. Agostinis, Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum. Biol Chem, 2016. 397(7): p. 649-56.
101. Xu, Z., et al., miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun, 2016. 7: p. 11422.
102. Yang, H., et al., ATF6 Is a Critical Determinant of CHOP Dynamics during the Unfolded Protein Response. iScience, 2020. 23(2): p. 100860.
103. Apostolou, A., et al., Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res, 2008. 314(13): p. 2454-67.
104. Tsai, Y.C. and A.M. Weissman, The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer, 2010. 1(7): p. 764-778.
105. Kaneko, M., et al., Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation. FEBS Lett, 2002. 532(1-2): p. 147-52.
106. Wang, M. and R.J. Kaufman, The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer, 2014. 14(9): p. 581-97.
107. Zhang, Z., et al., Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol, 2019. 25: p. 101047.
108. Kim, E., et al., Intracellular Ca(2 +) Imbalance Critically Contributes to Paraptosis. Front Cell Dev Biol, 2020. 8: p. 607844.
109. Yoon, M.J., et al., Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget, 2014. 5(16): p. 6816-31.
110. Zachari, M., et al., Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform. Dev Cell, 2019. 50(5): p. 627-643 e5.
111. Gonzalez, A., et al., Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature, 2023. 618(7964): p. 394-401.
112. Di Blasio, S., et al., Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology, 2016. 5(8): p. e1192739.
113. Oyadomari, S. and M. Mori, Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 2004. 11(4): p. 381-9.
114. Feng, X., et al., Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2alpha pathway under PTT/CDT combined therapy. Acta Biomater, 2023. 160: p. 211-224.
115. Jin, L., et al., CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun, 2019. 10(1): p. 4016.
116. Liu, P., et al., Cryo-thermal therapy inducing MI macrophage polarization created CXCL10 and IL-6-rich pro-inflammatory environment for CD4(+) T cell-mediated anti-tumor immunity. Int J Hyperthermia, 2019. 36(1): p. 408-420.
117. Castano, Z., et al., IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol, 2018. 20(9): p. 1084-1097.
118. House, I.G., et al., Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clin Cancer Res, 2020. 26(2): p. 487-504.
119. Mowat, C., et al., Anti-tumor immunity in mismatch repair-deficient colorectal cancers requires type I IFN-driven CCL5 and CXCL10. J Exp Med, 2021. 218(9).
120. Fucikova, J., et al., Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis, 2020. 11(11): p. 1013.
121. Parker, J.L., et al., Molecular basis for redox control by the human cystine/glutamate antiporter system xc(). Nat Commun, 2021. 12(1): p. 7147.
122. Yan, Y., et al., SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun, 2023. 14(1): p. 3673.
123. Ji, X., et al., xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene, 2018. 37(36): p. 5007-5019.
124. Bonifacino, J.S. and R. Rojas, Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol, 2006. 7(8): p. 568-79.
125. Wang, Y.N., et al., COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun, 2010. 399(4): p. 498-504.
指導教授 羅月霞(Yueh-Hsia Luo) 審核日期 2024-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明