博碩士論文 111223072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.135.193.193
姓名 林俊甫(Jun-Fu Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 選擇性標記含胍基化合物的化學探針分子
(Selective Chemical Probes for Labelling of Guanidine-bearing Molecule傑)
相關論文
★ 銀介導溶劑控制下從5-溴-1,2,3-三嗪選擇性合成呋喃以及吡咯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 胍基是一種強鹼性的含氮有機化合物官能基,通常在生理條件下帶有正電荷,能形成電荷-電荷作用力及多重氫鍵。精胺酸側鏈上的胍基是典型例子,精胺酸在蛋白質後修飾轉譯功能中發揮關鍵作用,如瓜胺酸化(citrullination)和甲基化(methylation)已被揭露與多種疾病生成有關,如類風濕性關節炎、狼瘡、朊病毒病和阿茲海默症等,近期科學家對於蛋白質上精胺酸後修飾對標靶蛋白的調節作用研究不遺餘力。在本篇論文中,我們合成一系列八環1,2-雙酮的衍生物,可以選擇性與胍基化合物或脲基化合物進行脫水重排反應,形成五七螺環的穩定產物;另一方面,我們設計製備具有偶氮官能基的八環1,2-雙酮化合物,透過照光預期可活化八環1,2-雙酮化合物與胍基的反應性,將使八環1,2-雙酮化合物成為更有應用性對含胍基化合物標定的化學探針工具。
摘要(英) Guanidine is a strongly alkaline nitrogen-containing organic compound that typically has a positive charge under physiological conditions. It is capable of forming charge–charge interactions and multiple hydrogen bonds. The guanidino group on the side chain of arginine is a typical example. Arginine plays a crucial role in the post-translational modification of proteins, such as citrullination and methylation, which have been linked to various diseases, such as rheumatoid arthritis, lupus, prion diseases and Alzheimer′s disease. Recently, scientists have dedicated significant efforts to studying the regulatory effects of post-translational modifications (PTMs) of arginine on proteins. In this thesis, we synthesized a series of dibenzocyclooctendione derivatives capable of undergoing condensation and rearrangement reactions with guanidine- or urea-bearing compounds to form a stable product with 5,7-spiroring. On the other hand, we also designed and synthesized octahydro-1,2-quinoline compounds with azo functional groups as chemical probes. These probes are expected to regulate the reactivity of the probe with guanidino and urea groups by controlling the E/Z isomerization of the photoswtich. This design aims to make them more versatile chemical probe tools for selectively labeling guanidine- and urea-containing compounds.
關鍵字(中) ★ 胍
★ 精胺酸
★ 光開關
★ 1,2-雙酮
★ 轉譯後修飾
★ 標定
關鍵字(英) ★ guanidine
★ arginine
★ photoswitch
★ 1,2-diketone
★ post-translational modification
★ labelling
論文目次 摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
縮寫表 xi
ㄧ、 緒論 1
1-1 前言 1
1-2 抗體–藥物偶聯物(antibody-drug conjugate, ADC) 2
1-2-1 離胺酸醯胺(lysine amide)偶聯 3
1-2-2 半胱胺酸(cysteine)偶聯 3
1-3蛋白質轉譯後修飾(protein post-translational modification, PTM) 4
1-3-1 醣基化(glycoslation) 5
1-3-2 磷酸化(phosphorylation) 6
1-3-3 甲基化(methylation) 7
1-4 胺基酸的偶聯反應 8
1-4-1 離胺酸(lysine)的偶聯反應 9
1-4-2 半胱胺酸(cysteine)的偶聯反應 9
1-4-3 酪胺酸(tyrosine)的偶聯反應 10
1-5 胍(guanidine)及其衍生物的介紹 11
1-6 胍官能團(guanidine group)的偶聯反應 12
1-7 1,2-二氮環辛烷(1,2-diazocine)及應用的介紹 17
1-8 研究動機 18
二、 實驗結果與討論 19
2-1 八環1,2-雙酮水溶性衍生物的合成 19
2-1-1 化合物6及7的合成 22
2-1-2 化合物12的合成 23
2-1-3 化合物17的合成 24
2-1-4 化合物23的合成 25
2-1-5 化合物29的合成 27
2-1-6 化合物35的合成 28
2-1-7 化合物40的合成 29
2-2 八環1,2-雙酮探針對精胺酸轉譯後修飾官能基的標定探討 31
2.3 反應機構的探討 33
2-4 光控制八環1,2雙酮的開發 34
三、 結論 38
四、 實驗部分 39
4.1 實驗儀器 39
4.1.1 核磁共振光譜儀(nuclear magnetic resonance spectroscopy, NMR) 39
4.1.2 高解析質譜儀 40
4.1.3 傅立葉轉換紅外光譜儀(Fourier transform infrared spectrometer, FT-IR) 40
4.2 實驗藥品 40
4.2.1 實驗藥品試劑 40
4.2.2 薄層色層分析(thin layer chromatography, TLC) 40
4.2.3 管柱色層分析(column chromatography) 41
4.3 合成步驟與光譜資料 41
參考文獻 72
附錄 79
參考文獻 [1] Canalle, L.-A.; Löwik, D.-W.-P.-M.; van Hest, J.-C.-M. “Polypeptide–Polymer Bioconjugates.” Chem. Soc. Rev. 2010, 39, 329–353.

[2] Tsuchikama, K.; An, Z. “Antibody-Drug Conjugates: Recent Advances in Conjugation and Linker Chemistries.” Protein Cell. 2018, 9, 33–46.

[3] Lambert, J. -M.; Chari, R.-V.-J. “Ado-Trastuzumab Emtansine (T-DM1): An Antibody-Drug Conjugate (ADC) for HER2-Positive Breast Cancer.” J. Med. Chem. 2014, 57, 6949–6964.

[4] Nicolaou, K.-C.; Rigol, S. “The Role of Organic Synthesis in The Emergence and Development of Antibody-Drug Conjugates as Targeted Cancer Therapies.” Angew. Chem. Int. Ed. 2019, 58, 11206–11241.

[5] Ramazi, S.; Zahiri, J. “Post-Translational Modifications in Proteins: Resources, Tools and Prediction Methods.” Database 2021, baab012.

[6] Conibear, A.-C. “Deciphering Protein Post-Translational Modifications Using Chemical Biology Tools.” Nat. Rev. Chem. 2020, 4, 674–695.

[7] Czuba, L.-C.; Hillgren, K. M.; Swaan, P.-W. “Post-Translational Modifications of Transporters.” Pharmacol. Ther. 2018, 192, 88–99.

[8] Abou-Abbass, H.; Abou-El-Hassan, H.; Bahmad, H.; Zibara, K.; Zebian, A.; Youssef, R.; Ismail, J.; Zhu R; Zhou S.; Dong, X.; Nasser, M.; Bahmad, M.; Darwish, H.; Mechref, Y.; Kobeissy, F. “Glycosylation and Other PTMs Alterations in Neurodegenerative Diseases: Current Status and Future Role in Neurotrauma.” Electrophoresis 2016, 37, 1549–1561.

[9] Jin, J.; Pawson, T. “Modular Evolution of Phosphorylation-Based Signalling Systems.” Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2540–2555.

[10] Deribe, Y. L.; Pawson, T.; Dikic, I. “Post-Translational Modifications in Signal Integration.” Nat. Struct. Mol. Biol. 2010, 17, 666–672.

[11] Han, D.; Huang, M.; Wang, T.; Li, Z.; Chen, Y.; Liu, C.; Lei, Z.; Chu, X. “Lysine Methylation of Transcription Factors in Cancer.” Cell Death Dis. 2019, 10, 290.

[12] Raposo, A. E.; Piller, S.-C. “Protein Arginine Methylation: An Emerging Regulator of the Cell Cycle.” Cell Div. 2018, 13, 1–16.

[13] Kang, M.-S.; Kong, T.-W.-S.; Khoo, J.-Y.-X.; Loh, T.-P. “Recent Developments in Chemical Conjugation Strategies Targeting Native Amino Acids in Proteins and Their Applications in Antibody–Drug Conjugates.” Chem. Sci. 2021, 12, 13613–13647.

[14] Tan, Y.; Chrysopoulou, M.; Rinschen, M.-M. “Integrative Physiology of Lysine Metabolites.” Physiol Genomics 2023, 55, 579–586.
[15] Haque, M.; Forte, N.; Baker, J. R. “Site-Selective Lysine Conjugation Methods and Applications Towards Antibody–Drug Conjugates.” Chem. Commun. 2021, 57, 10689–10702.

[16] Vellasco, A.-P.; Haddad R.; Eberlin, M.-N.; Höehr, N.-F. “Combined Cysteine and Homocysteine Quantitation in Plasma by Trap and Release Membrane Introduction Mass Spectrometry.” Analyst 2002, 127, 1050–1053.

[17] Chauhan, P.; Ragendu, V.; Kumar, M.; Molla, R.; Mishra, S.-D.; Basa, S.; Rai, V. “Chemical Technology Principles for Selective Bioconjugation of Proteins and Antibodies.” Chem. Soc. Rev. 2024, 53, 380–449.

[18] Stump, B. “Click Bioconjugation: Modifying Proteins Using Click-Like Chemistry.” ChemBioChem 2022, 23, e202200016.

[19] Berlinck, R.-G.-S.; Trindade-Silva, A.-E.; Santos, M.-F.-C. “The Chemistry and Biology of Organic Guanidine Derivatives.” Nat. Prod. Rep. 2012, 29, 1382–1406.

[20] Fuhrmann, J.; Thompson, P.-R. “Protein Arginine Methylation and Citrullination in Epigenetic Regulation.” ACS Chem. Biol. 2016, 11, 654–668.

[21] Grundler, V.; Gademann, K. “Direct Arginine Modification in Native Peptides and Application to Chemical Probe Development.” ACS Med. Chem. Lett. 2014, 5, 1290–1295.
[22] Hwang, D.; Nilchan, N.; Nanna, A.-R.; Li, X.; Cameron, M.-D.; Roush, W.-R.; Park, H.; Rader, C. “Site-Selective Antibody Functionalization via Orthogonally Reactive Arginine and Lysine Residues.” Cell Chem. Biol. 2019, 26, 1229–1239.

[23] Zheng, Q., Osunsade, A.; David, Y. “Protein Arginine Deiminase 4 Antagonizes Methylglyoxal-Induced Histone Glycation.” Nat. Commun. 2020, 11, 3241.

[24] Thompson, D.-A.; Ng, R.; Dawson, P.-E. “Arginine Selective Reagents for Ligation to Peptides and Proteins.” J. Pept. Sci. 2016, 22, 311–319.

[25] Wanigasekara, M.-S.; Chowdhury, S.-M. “Evaluation of Chemical Labeling Methods for Identifying Functional Arginine Residues of Proteins by Mass Spectrometry.” Anal. Chim. Acta. 2016, 935, 197–206.

[26] Quagliato, D.-A.; Andrae, P.-M.; Fan,Y. (2007), US Appl. Patent, US20070203116A1.

[27] Shih, C.-T.; Kuo, B.-H.; Tsai, C.-Y.; Tseng, M.-C., Shie, J.-J. “Dibenzocyclooctendiones (DBCDOs): Arginine-Selective Chemical Labeling Reagents Obtained through Benzilic Acid Rearrangement.” Org. Lett. 2022, 24, 4694–4698.

[28] Siewertsen, R.; Neumann, H.; Buchheim-Stehn, B.; Herges, R.; Näther, C.; Renth, F.; Temps, F. “Highly Efficient Reversible Z-E Photoisomerization of a Bridged Azobenzene with Visible Light through Resolved S1(nπ*) Absorption Bands.” J. Am. Chem. Soc. 2009, 131, 15594–15595.
[29] Mukherjee, A.; Seyfried, M.-D.; Ravoo, B.-J. “Azoheteroarene and Diazocine Molecular Photoswitches: Self- Assembly, Responsive Materials and Photopharmacology.” Angew. Chem. Int. Ed. 2023, 62, e202304437.

[30] Ko, T.; Oliveira, M.-M.; Alapin, J.-M.; Morstein, J.; Klann, E.; Trauner, D. “Optical Control of Translation with a Puromycin Photoswitch.” J. Am. Chem. Soc. 2022, 144, 21494–21501.

[31] Reynders, M.; Chaikuad, A.; Berger, B.-T.; Bauer, K.; Koch, P.; Laufer, S.; Knapp, S.; Trauner, D. “Controlling the Covalent Reactivity of a Kinase Inhibitor with Light.” Angew. Chem. Int. Ed. 2021, 60, 20178–20183.

[32] Hurben, K.; Ge, P.; Bouchard, J.-L.; Doran, T.-M.; Tretyakova, N.-Y. “Photocaged Dicarbonyl Probe Provides Spatiotemporal Control over Protein Glycation.” Chem. Commun. 2022, 58, 855–858.

[33] Yates, P.; Lewars, E.-G.; McCabe, P.-H. “Cyclooctatetraenoquinones. I. The Synthesis and Structure of Dibenzo[a,e]cyclooctene-5,6-dione.” Can. J. Chem. 1970, 48, 788–795.

[34] Mbua, N.-E.; Guo, J.; Wolfert, M.-A.; Steet R.; Boons, G.-J. “Strain-Promoted Alkyne-Azide Cycloadditions (SPAAC) Reveal New Features of Glycoconjugate Biosynthesis.” ChemBioChem 2011, 12, 1912–1921.

[35] Cruchter, T.; Harms, K.; Meggers, E. “Strain-Promoted Azide–Alkyne Cycloaddition with Ruthenium(II)–Azido Complexes.” Chem. Eur. J. 2013, 19, 16682–16689.
[36] Kachbi-Khelfallah, S.; Monteil, M.; Cortes-Clerget, M.; Migianu-Griffoni, E.; Pirat, J.-L.; Gager, O.; Deschamp, J.; Lecouvey, M. “Towards Potential Nanoparticle Contrast Agents: Synthesis of New Funnctionalized PEG Bisphosphonates.” Beilstein J. Org. Chem. 2016, 12, 1366–1371.

[37] Ning, X.; Guo, J.; Wolfert, M.-A.; Boons, G.-J. “Visualizing Metabolically Labeled Glycoconjugates of Living Cells by Copper-Free and Fast Huisgen Cycloadditions.” Angew. Chem., Int. Ed. 2008, 47, 2253–2255.

[38] Trosien, S.; Waldvogel, S.-R. “Synthesis of Highly Functionalized 9,10-Phenanthrenequinones by Oxidative Coupling Using MoCl5.” Org. Lett. 2012, 14, 2976–2979.

[39] Cheng, H.; Yoon,J.; Tian, H. “Recent Advances in the Use of Photochromic Dyes for Photocontrol in Biomedicine.” Coord. Chem. Rev. 2018, 372, 66–84.

[40] Muraoka, T.; Uchida, N.; Ryu, Y; Muraoka, T. (2022), JP Appl. Patent, P2022171296A.

[41] Wei, Y.; Liu, X. G.; Shi, M. “Reduction of Activated Carbonyl Groups Using Alkylphosphanes as Reducing Agents: A mechanisticStudy.” Eur. J. Org. Chem. 2012, 2386–2393.

[42] Deo, C.; Bogliotti, N.; Metivier, R.; Retailleau, P.; Xie, J. “A Visible-Light-Triggered Conformational Diastereomer Photoswitch in a Bridged Azobenzene.” Chem. Eur. J. 2016, 22, 9092–9096.

[43] Uchida, N.; Ryu, Y.; Takagi, Y.; Yoshizawa, K.; Suzuki, K.; Anraku, Y.; Ajioka, I.; Shimokawa, N.; Takagi, M.; Hoshino, N.; Akutagawa, T.; Matsubara, T.; Sato, T.; Higuchi, Y.; Ito, H.; Morita, M.; Muraoka, T. “Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for in Vivo Delivery.” J. Am. Chem. Soc. 2023, 145, 6210–6220.

[44] Gottlieb, H.-E.; Kotlyar, V.; Nudelman, A. “NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities.” J. Org. Chem. 1997, 62, 7512–7515.

[45] Marchetti, C.; Minarini, A.; Tumiatti, V.; Moraca, F.; Parrotta, L.; Alcaro, S.; Rigo, R.; Sissi, C.; Gunaratnam, M.; Ohnmacht, S. A.; Neidle, S.; Milelli, A. “Macrocyclic Naphthalene Diimides as G-Quadruplex.” Bioorg. Med. Chem. 2015, 23, 3819–3830.

[46] Lohbeck, J.; Miller, A.-K. “Practical Synthesis of a Phthalimide-Based Cereblon Ligand to Enable PROTAC Development.” Bioorg. Med. Chem. Lett. 2016, 26, 5260–5262.
指導教授 謝俊結 侯敦仁(Jiun-Jie Shie Duen-Ren Hou) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明