參考文獻 |
1. https://www.ucsusa.org/resources/benefits-renewable-energy-use.
2. Lewis, N. S.; Nocera, D. G., Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 2006, 103 (43), 15729-35.
3. https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=796.
4. https://www.nrel.gov/pv/cell-efficiency.html.
5. http://www.fengtayeps.org.tw/paper.asp?page=2013&num=1346&num2=219.
6. https://epti.ftis.org.tw/WPContent/Uploads/2_5-5%E4%B8%8B%E4%B8%96%E4%BB%A3%E7%B6%A0%E8%89%B2%E7%92%B0%E4%BF%9D%E8%83%BD%E6%BA%90%E6%8A%80%E8%A1%93-%E6%9C%89%E6%A9%9F%E8%96%84%E8%86%9C%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0.pdf.
7. https://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=dc1dc110-eaff-4a2a-8f5b-81f0654aed21.
8. https://zh.wikipedia.org/wiki/%E9%88%A3%E9%88%A6%E7%A4%A6.
9. Wali, Q.; Iftikhar, F. J.; Khan, M. E.; Ullah, A.; Iqbal, Y.; Jose, R., Advances in stability of perovskite solar cells. Organic Electronics 2020, 78, 105590.
10. Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G., High-Efficiency Perovskite Solar Cells. Chemical Reviews 2020, 120 (15), 7867-7918.
11. Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T.-W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nature Physics 2015, 11 (7), 582-587.
12. Chang, Y.-M.; Leu, C.-Y., Conjugated polyelectrolyte and zinc oxide stacked structure as an interlayer in highly efficient and stable organic photovoltaic cells. Journal of Materials Chemistry A 2013, 1 (21), 6446-6451.
13. An, D.; Zou, J.; Wu, H.; Peng, J.; Yang, W.; Cao, Y., White emission polymer light-emitting devices with efficient electron injection from alcohol/water-soluble polymer/Al bilayer cathode. Organic Electronics 2009, 10 (2), 299-304.
14. Xue, S.; Qiu, X.; Yao, L.; Wang, L.; Yao, M.; Gu, C.; Wang, Y.; Xie, Z.; Wu, H., Fully solution-processed and multilayer blue organic light-emitting diodes based on efficient small molecule emissive layer and intergrated interlayer optimization. Organic Electronics 2015, 27, 35-40.
15. Xue, S.; Yao, L.; Shen, F.; Gu, C.; Wu, H.; Ma, Y., Highly Efficient and Fully Solution-Processed White Electroluminescence Based on Fluorescent Small Molecules and a Polar Conjugated Polymer as the Electron-Injection Material. Advanced Functional Materials 2012, 22 (5), 1092-1097.
16. Nam, C.-Y., Ambient Air Processing Causes Light Soaking Effects in Inverted Organic Solar Cells Employing Conjugated Polyelectrolyte Electron Transfer Layer. The Journal of Physical Chemistry C 2014, 118 (47), 27219-27225.
17. Lee, E. J.; Heo, S. W.; Han, Y. W.; Moon, D. K., An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. Journal of Materials Chemistry C 2016, 4 (13), 2463-2469.
18. Jia, X.; Zhang, L.; Luo, Q.; Lu, H.; Li, X.; Xie, Z.; Yang, Y.; Li, Y.-Q.; Liu, X.; Ma, C.-Q., Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer. ACS Applied Materials & Interfaces 2016, 8 (28), 18410-18417.
19. Xie, X.; Liu, G.; Xu, C.; Li, S.; Liu, Z.; Lee, E.-C., Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells. Organic Electronics 2017, 44, 120-125.
20. Zhang, Q.; Zhang, M.; Zhang, F.; Liu, X.; Teng, F.; Hou, Y.; Cui, Q.; Hu, Y.; Lou, Z., Understanding the mechanisms of a conjugated polymer electrolyte for interfacial modification in solution-processed organic-inorganic hybrid perovskite photodetectors. Organic Electronics 2020, 83, 105729.
21. Lee, J.; Kang, H.; Kim, G.; Back, H.; Kim, J.; Hong, S.; Park, B.; Lee, E.; Lee, K., Achieving Large-Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer. Advanced Materials 2017, 29 (22), 1606363.
22. Li, B.; Xiang, Y.; Jayawardena, K. D. G. I.; Luo, D.; Wang, Z.; Yang, X.; Watts, J. F.; Hinder, S.; Sajjad, M. T.; Webb, T.; Luo, H.; Marko, I.; Li, H.; Thomson, S. A. J.; Zhu, R.; Shao, G.; Sweeney, S. J.; Silva, S. R. P.; Zhang, W., Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells. Nano Energy 2020, 78, 105249.
23. Zhang, W.; Wan, L.; Fu, S.; Li, X.; Fang, J., Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. Journal of Materials Chemistry A 2020, 8 (14), 6546-6554.
24. Liu, Z.; Li, S.; Wang, X.; Cui, Y.; Qin, Y.; Leng, S.; Xu, Y.-x.; Yao, K.; Huang, H., Interfacial engineering of front-contact with finely tuned polymer interlayers for high-performance large-area flexible perovskite solar cells. Nano Energy 2019, 62, 734-744.
25. Kim, S.; Jeong, J.-E.; Hong, J.; Lee, K.; Lee, M. J.; Woo, H. Y.; Hwang, I., Improved Interfacial Crystallization by Synergic Effects of Precursor Solution Stoichiometry and Conjugated Polyelectrolyte Interlayer for High Open-Circuit Voltage of Perovskite Photovoltaic Diodes. ACS Applied Materials & Interfaces 2020, 12 (10), 12328-12336.
26. Zhang, Q.; Wang, W.-T.; Chi, C.-Y.; Wächter, T.; Chen, J.-W.; Tsai, C.-Y.; Huang, Y.-C.; Zharnikov, M.; Tai, Y.; Liaw, D.-J., Toward a universal polymeric material for electrode buffer layers in organic and perovskite solar cells and organic light-emitting diodes. Energy & Environmental Science 2018, 11 (3), 682-691.
27. Liu, Y.; Xiang, W.; Xu, T.; Zhang, H.; Xu, H.; Zhang, Y.; Qi, W.; Liu, L.; Yang, T.; Wang, Z.; Liu, S., Strengthened Surface Modification for High-Performance Inorganic Perovskite Solar Cells with 21.3% Efficiency. Small 2023, 19 (46), 2304190.
28. Coppo, P.; Cupertino, D. C.; Yeates, S. G.; Turner, M. L., Synthetic Routes to Solution-Processable Polycyclopentadithiophenes. Macromolecules 2003, 36 (8), 2705-2711.
29. Balandier, J.-Y.; Quist, F.; Amato, C.; Bouzakraoui, S.; Cornil, J.; Sergeyev, S.; Geerts, Y., Synthesis of soluble oligothiophenes bearing cyano groups, their optical and electrochemical properties. Tetrahedron 2010, 66 (49), 9560-9572.
30. Keyworth, C. W.; Chan, K. L.; Labram, J. G.; Anthopoulos, T. D.; Watkins, S. E.; McKiernan, M.; White, A. J. P.; Holmes, A. B.; Williams, C. K., The tuning of the energy levels of dibenzosilole copolymers and applications in organic electronics. Journal of Materials Chemistry 2011, 21 (32), 11800-11814.
31. Grosjean, S.; Hassan, Z.; Wöll, C.; Bräse, S., Diverse Multi-Functionalized Oligoarenes and Heteroarenes for Porous Crystalline Materials. European Journal of Organic Chemistry 2019, 2019 (7), 1446-1460.
32. Zhu, X.; Guo, W.; Li, H.; Zhang, G.; Pei, M.; Wang, L.; Feng, J., Synthesis of a novel water-soluble conjugated polyelectrolyte based on polycyclopentadithiophene backbone and its application for heparin detection. Designed Monomers and Polymers 2014, 17 (7), 624-628.
33. Houston, S. D.; Fahrenhorst-Jones, T.; Xing, H.; Chalmers, B. A.; Sykes, M. L.; Stok, J. E.; Farfan Soto, C.; Burns, J. M.; Bernhardt, P. V.; De Voss, J. J.; Boyle, G. M.; Smith, M. T.; Tsanaktsidis, J.; Savage, G. P.; Avery, V. M.; Williams, C. M., The cubane paradigm in bioactive molecule discovery: further scope, limitations and the cyclooctatetraene complement. Organic & Biomolecular Chemistry 2019, 17 (28), 6790-6798.
34. Zhou, Z.; Corbitt, T. S.; Parthasarathy, A.; Tang, Y.; Ista, L. K.; Schanze, K. S.; Whitten, D. G., “End-Only” Functionalized Oligo(phenylene ethynylene)s: Synthesis, Photophysical and Biocidal Activity. The Journal of Physical Chemistry Letters 2010, 1 (21), 3207-3212.
35. Talipov, M. R.; Hossain, M. M.; Boddeda, A.; Thakur, K.; Rathore, R., A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue. Organic & Biomolecular Chemistry 2016, 14 (10), 2961-2968.
36. Fortun, S.; Beauclair, P.; Schmitzer, A. R., Metformin as a versatile ligand for recyclable palladium-catalyzed cross-coupling reactions in neat water. RSC Advances 2017, 7 (34), 21036-21044.
37. Lin, J. J.; Bird, J. P., Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. Journal of Physics: Condensed Matter 2002, 14, R501 - R596.
38. Hendriks, K. H.; Wijpkema, A. S. G.; van Franeker, J. J.; Wienk, M. M.; Janssen, R. A. J., Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells. Journal of the American Chemical Society 2016, 138 (31), 10026-10031.
39. Nelson, T. L.; Young, T. M.; Liu, J.; Mishra, S. P.; Belot, J. A.; Balliet, C. L.; Javier, A. E.; Kowalewski, T.; McCullough, R. D., Transistor Paint: High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole. Advanced Materials 2010, 22 (41), 4617-4621.
40. Syed, A. M.; Iqbal, A. K.; Waheed, A. Y.; Khasan, S. K., Space Charge–Limited Current Model for Polymers. In Conducting Polymers, Faris, Y., Ed. IntechOpen: Rijeka, 2016; p Ch. 5. |