參考文獻 |
1. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics 2017, 11 (6), 372-378.
2. Fritts, C. E., On the Fritts selenium cells and batteries. Journal of the Franklin Institute 1885, 119 (3), 221-232.
3. https://www.nrel.gov/pv/cell-efficiency.html 2024.
4. Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature energy 2017, 2 (5), 1-8.
5. Schindler, F.; Fell, A.; Müller, R.; Benick, J.; Richter, A.; Feldmann, F.; Krenckel, P.; Riepe, S.; Schubert, M. C.; Glunz, S. W., Towards the efficiency limits of multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells 2018, 185, 198-204.
6. Kayes, B. M.; Nie, H.; Twist, R.; Spruytte, S. G.; Reinhardt, F.; Kizilyalli, I. C.; Higashi, G. S. In 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, 2011 37th IEEE Photovoltaic Specialists Conference, IEEE: 2011; pp 000004-000008.
7. Nazeeruddin, M. K.; Grätzel, M., Transition metal complexes for photovoltaic and light emitting applications. Photofunctional Transition Metal Complexes 2007, 113-175.
8. Rahman, S.; Haleem, A.; Siddiq, M.; Hussain, M. K.; Qamar, S.; Hameed, S.; Waris, M., Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC advances 2023, 13 (28), 19508-19529.
9. Masud; Kim, H. K., Redox shuttle-based electrolytes for dye-sensitized solar cells: comprehensive guidance, recent progress, and future perspective. ACS Omega 2023, 8 (7), 6139-6163.
10. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y., Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews 2017, 46 (19), 5975-6023.
11. Cole, J. M.; Pepe, G.; Al Bahri, O. K.; Cooper, C. B., Cosensitization in dye-sensitized solar cells. Chemical reviews 2019, 119 (12), 7279-7327.
12. P. T. Hsiao, M. D. L., W. T. Hung, L. K. Huang, S. W. Shih, H. W. Chen. , Automated Manufacture Technology and Applications of Dye-sensitized Cells. 2019, 393, 154-160.
13. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261 (5559), 402-403.
14. O′regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 1991, 353 (6346), 737-740.
15. Yun, S.; Lund, P. D.; Hinsch, A., Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy & Environmental Science 2015, 8 (12), 3495-3514.
16. Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano 2009, 3 (10), 3103-3109.
17. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical communications 2015, 51 (88), 15894-15897.
18. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 6 (3), 242-247.
19. Shockley, W.; Queisser, H., Detailed balance limit of efficiency of p–n junction solar cells. In Renewable Energy, Routledge: 2018; pp Vol2_35-Vol2_54.
20. Kalyanasundaram, K.; Grätzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews 1998, 177 (1), 347-414.
21. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical Reviews 2010, 110 (11), 6595-6663.
22. Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C., Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry 2020, 22 (21), 7168-7218.
23. Ardo, S.; Meyer, G. J., Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews 2009, 38 (1), 115-164.
24. Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M., Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. Journal of the Chemical Society, Chemical Communications 1995, (1), 65-66.
25. Listorti, A.; O’regan, B.; Durrant, J. R., Electron transfer dynamics in dye-sensitized solar cells. Chemistry of Materials 2011, 23 (15), 3381-3399.
26. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Graetzel, M., Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. Journal of the American Chemical Society 1988, 110 (4), 1216-1220.
27. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
28. Nazeeruddin, M. K.; Zakeeruddin, S.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M., Acid− Base equilibria of (2, 2 ‘-Bipyridyl-4, 4 ‘-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry 1999, 38 (26), 6298-6305.
29. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
30. Wu, Y.; Zhu, W., Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews 2013, 42 (5), 2039-2058.
31. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z. s.; Tian, H., Organic D‐A‐π‐A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials 2011, 21 (4), 756-763.
32. Li, W.; Wu, Y.; Li, X.; Xie, Y.; Zhu, W., Absorption and photovoltaic properties of organic solar cell sensitizers containing fluorene unit as conjunction bridge. Energy & Environmental Science 2011, 4 (5), 1830-1837.
33. Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W., DA-π-A featured sensitizers bearing phthalimide and benzotriazole as auxiliary acceptor: effect on absorption and charge recombination dynamics in dye-sensitized solar cells. ACS Applied Materials & Interfaces 2012, 4 (3), 1822-1830.
34. Zhang, X.; Hou, L.; Samorì, P., Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nature Communications 2016, 7 (1), 11118.
35. Cheng, H.; Yoon, J.; Tian, H., Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coordination Chemistry Reviews 2018, 372, 66-84.
36. Schwartz, H.; Ruschewitz, U.; Heinke, L., Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives. Photochemical & Photobiological Sciences 2018, 17 (7), 864-873.
37. McClure, B. A.; Rack, J. J., Two-color reversible switching in a photochromic ruthenium sulfoxide complex. Angew. Chem., Int. Ed 2009, 48 (45), 8556-8558.
38. Nigel Corns, S.; Partington, S. M.; Towns, A. D., Industrial organic photochromic dyes. Coloration Technology 2009, 125 (5), 249-261.
39. Wu, W.; Wang, J.; Zheng, Z.; Hu, Y.; Jin, J.; Zhang, Q.; Hua, J., A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells. Scientific Reports 2015, 5 (1), 8592.
40. Castán, J.-M. A.; Mwalukuku, V. M.; Riquelme, A. J.; Liotier, J.; Huaulmé, Q.; Anta, J. A.; Maldivi, P.; Demadrille, R., Photochromic spiro-indoline naphthoxazines and naphthopyrans in dye-sensitized solar cells. Materials Chemistry Frontiers 2022, 6 (20), 2994-3005.
41. Huaulmé, Q.; Mwalukuku, V. M.; Joly, D.; Liotier, J.; Kervella, Y.; Maldivi, P.; Narbey, S.; Oswald, F.; Riquelme, A. J.; Anta, J. A., Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency. Nature Energy 2020, 5 (6), 468-477.
42. Liotier, J.; Mwalukuku, V. M.; Fauvel, S.; Riquelme, A. J.; Anta, J. A.; Maldivi, P.; Demadrille, R., Photochromic Naphthopyran Dyes Incorporating a Benzene, Thiophene, or Furan Spacer: Effect on Photochromic, Optoelectronic, and Photovoltaic Properties in Dye‐Sensitized Solar Cells. Solar RRL 2022, 6 (8), 2100929.
43. Mwalukuku, V. M.; Liotier, J.; Riquelme, A. J.; Kervella, Y.; Huaulmé, Q.; Haurez, A.; Narbey, S.; Anta, J. A.; Demadrille, R., Strategies to improve the photochromic properties and photovoltaic performances of naphthopyran dyes in dye‐sensitized solar cells. Advanced Energy Materials 2023, 13 (8), 2203651.
44. Garg, K.; Paris, S. I.; Rack, J. J., A Flexible Chelate Leads to Phototriggered Isomerization in an Osmium Sulfoxide Complex. European Journal of Inorganic Chemistry 2013, 2013 (7), 1142-1148.
45. Anuja, P.; Paira, P., Luminescent anticancer Ru (II)-arenebipyridine and phenanthroline complexes: Synthesis, characterization, DFT studies, biological interactions and cellular imaging application. Journal of Inorganic Biochemistry 2020, 208, 111099.
46. Dai, H.; Yang, J.; Ye, Z.; Liu, C.; Xu, B.; Shi, G.; Su, S.; Zhang, Y.; Chi, Z., Near‐Infrared Colorimetric and Ratiometric Fluorescence Sensor for Fluoride Ions. ChemistrySelect 2022, 7 (26), e202200777.
47. Damien, J.; Yann, K.; Renaud, D., Organic photochromic dyes capable of adapting transparency to different weather conditions for use in dye-sensitized solar cells, and uses thereof for dye-sensitized solar cells. 2017, 05 (22), EP2017-305597.
48. Wong, C.-L.; Cheng, Y.-H.; Poon, C.-T.; Yam, V. W.-W., Synthesis, photophysical, photochromic, and photomodulated resistive memory studies of dithienylethene-containing copper (I) diimine complexes. Inorganic Chemistry 2020, 59 (20), 14785-14795.
49. Kannan, P.; Karthick, N.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G., Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies. Journal of Molecular Structure 2017, 1139, 196-201.
50. Oh, K.-I.; Baiz, C. R., Empirical S= O stretch vibrational frequency map. The Journal of chemical physics 2019, 151 (23).
51. Li, Y.-S.; Li, S., FTIR Spectra of HSCH2CH2SH, CH3SCH2SH, and CH3SSCH3 in Argon and Nitrogen Matrices. Spectrochimica Acta Part A: Molecular Spectroscopy 1994, 50 (3), 509-519.
52. Barry, B.; Edwards, H.; Williams, A., Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands. Journal of Raman spectroscopy 1992, 23 (11), 641-645.
53. Reyes, Y. I. A.; Yang, K.-S.; Thang, H. V.; Coluccini, C.; Chen, S.-Y.; Chen, H.-Y. T., Mechanistic understanding of N2 activation: a comparison of unsupported and supported Ru catalysts. Faraday Discussions 2023, 243, 148-163.
54. Fedoseeva, M.; Delor, M.; Parker, S. C.; Sazanovich, I. V.; Towrie, M.; Parker, A. W.; Weinstein, J. A., Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes. Physical Chemistry Chemical Physics 2015, 17 (3), 1688-1696.
55. Imran, H.; Alam, A.; Dharuman, V.; Lim, S., Fabrication of enzyme-free and rapid electrochemical detection of glucose sensor based on ZnO rod and Ru doped carbon nitride modified gold transducer. Nanomaterials 2022, 12 (10), 1778.
56. Liu, K.-Y.; Ko, C.-Y.; Ho, K.-C.; Lin, K.-F., Synthesis and characterization of cross-linkable ruthenium dye with ion coordinating property for dye-sensitized solar cells. Polymer 2011, 52 (15), 3318-3324.
57. Mbese, J. Z.; Ajibade, P. A., Homonuclear tris-dithiocarbamato ruthenium (III) complexes as single-molecule precursors for the synthesis of ruthenium (III) sulfide nanoparticles. Journal of Sulfur Chemistry 2017, 38 (2), 173-187.
58. Deepa, M.; Agnihotry, S.; Gupta, D.; Chandra, R., Ion-pairing effects and ion–solvent–polymer interactions in LiN (CF3SO2)2–PC–PMMA electrolytes: a FTIR study. Electrochimica Acta 2004, 49 (3), 373-383.
59. Kam, W.; Liew, C.-W.; Lim, J.; Ramesh, S., Electrical, structural, and thermal studies of antimony trioxide-doped poly (acrylic acid)-based composite polymer electrolytes. Ionics 2014, 20, 665-674.
60. Ramesh, S.; Lu, S.-C., Effect of nanosized silica in poly (methyl methacrylate)–lithium bis (trifluoromethanesulfonyl) imide based polymer electrolytes. Journal of Power Sources 2008, 185 (2), 1439-1443.
61. Philip, D.; Eapen, A.; Aruldhas, G., Vibrational and surface enhanced Raman scattering spectra of sulfamic acid. Journal of solid state chemistry 1995, 116 (2), 217-223. |