博碩士論文 111223013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.220.97.161
姓名 王兆賢(Chao-Shian Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成具光致變色特性的染料並應用於染料敏化太陽能電池
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 染料敏化太陽能電池(Dye sensitized solar cells,簡稱DSC),因為有著製程簡易、製造成本低、色彩多樣化等諸多優點而具有發展潛力。但是DSC元件的顏色無法在元件完成組裝後再次進行調整,可能成為應用於光伏窗戶等裝置的問題。本研究合成用於DSC元件之具光致變色特性的錯合物染料及有機染料,期望所敏化之DSC元件具光致變色性質,錯合物染料在結構中以含有S=O鍵的iPr-pySO (2-(propane-2-sulfinylmethyl)-pyridine)做為輔助配位基,合成出染料PC-3-Cl與PC-3-NCS,在濃度為10-4 M之PC-3-Cl與PC-3-NCS的DMF溶液中在經功率為10 W、波長為365 nm的光源照射20分鐘後,二個錯合物染料的吸收皆變強,顏色也分別從原本的橘色或黃色轉變為深棕色。此外,以染料PC-3-Cl做為光敏劑所組裝之元件的光電轉換效率為1.25%,在照光8分鐘後元件的光電轉換效率可提高至1.63%;而以染料PC-3-NCS做為光敏劑所組裝之元件的光電轉換效率為3.16%,在經由功率為10 W、波長為365 nm的照射後9分鐘後元件的光電轉換效率下降至2.44%。有機染料則是以BT (benzothiadiazole)和BTA(benzotriazole)單元做為輔助拉電子基(Auxiliary acceptor, Aa)的NW-1和NW-2,染料結構形式為D-Aa-π-A,其中有機染料NW-1在濃度為2⨯10-4 M的甲苯溶液中經由功率為10 W、波長為365 nm的光源照射10分鐘後,染料溶液的顏色雖然從原本的亮橘色轉變為暗橘色,但吸收光譜並沒有改變,NW-1似乎不具光致變色的特性。以NW-1做為光敏劑所組裝之元件的光電轉換效率也僅為0.71%。
摘要(英) Dye-sensitized solar cells (DSCs) have significant development potential due to their numerous advantages, including simple manufacturing processes, low production costs, and a wide variety of colors. However, the color of DSC components cannot be adjusted once the assembly is completed, which may pose a problem for applications such as photovoltaic windows. This study synthesizes photochromic complex dyes and organic dyes for use in DSC components, aiming to impart photochromic properties to the sensitized DSC components. The complex dyes incorporate the iPr-pySO (2-(propane-2-sulfinylmethyl)- pyridine) ligand, which contains an S=O bond, as an auxiliary ligand. The synthesized dyes, PC-3-Cl and PC-3-NCS, when dissolved in DMF at a concentration of 10-4 M, exhibited increased absorption and a color change from orange or yellow to dark brown after being exposed to a 10 W, 365 nm light source for 20 minutes. Additionally, the photoelectric conversion efficiency of the DSC assembled with PC-3-Cl as the photosensitizer improved from 1.25% to 1.63% after 8 minutes of light exposure. However, the photoelectric conversion efficiency of the DSC assembled with PC-3-NCS as the photosensitizer decreased from 3.16% to 2.44% after 9 minutes of exposure to a 10 W, 365 nm light source. The organic dyes NW-1 and NW-2 use BT (benzothiadiazole) and BTA (benzotriazole) units as auxiliary acceptors (Aa) in a D-Aa-π-A structure. For organic dye NW-1, when dissolved in toluene at a concentration of 2⨯10-4 M and exposed to a 10 W, 365 nm light source for 10 minutes, the dye solution color changed from bright orange to dark orange, but the absorption spectrum did not change, indicating that NW-1 doesn’t possess photochromic properties. The photoelectric conversion efficiency of the DSC assembled with NW-1 as the photosensitizer was only 0.71%.
關鍵字(中) ★ 光致變色
★ 染料敏化太能電池
★ 釕金屬錯合物染料
★ 有機染料
關鍵字(英)
論文目次 摘要 V
圖摘要 VII
Abstract VIII
謝誌 X
目錄 XI
圖目錄 XVII
表目錄 XXIII
第一章、緒論 1
1-1、前言 1
1-2、太陽能電池的發展與分類 1
1-3、染料敏化太陽能電池的架構、工作原理 3
1-3-1、染料敏化太陽能電池的架構 3
1-3-2、染料敏化太陽能電池的工作原理 4
1-4、染料敏化太陽能電池於室內弱光下有高的光電轉換效率 6
1-5、染料敏化太陽能電池的的發展與染料種類 7
1-6、釕錯合物染料與有機染料 9
1-6-1、染料所需具備之條件 9
1-6-2、釕錯合物染料 11
1-6-3、有機染料 13
1-6-3-1、以Benzothiadiazole做為輔助拉電子基的有機染料 14
1-6-3-2、以Benzotriazole做為輔助拉電子基的有機染料 16
1-7、具光致變色特性的釕錯合物與有機染料 18
1-7-1、具光致變色單元分子之特性 18
1-7-2、具光致變色特性的釕金屬錯合物 19
1-7-3、具光致變色特性的有機染料 20
1-7-3-1、以Diarylethenes做為光致變色單元的有機染料 21
1-7-3-2、以Spiropyrans做為光致變色單元的有機染料 24
1-7-3-3、以Naphthopyran做為光致變色單元的有機染料 26
1-8、研究動機 33
第二章 實驗部分 34
2-1、實驗藥品 34
2-2、中間產物之結構、分子量與簡稱 38
2-3、最終產物之結構、分子量與簡稱 42
2-4、釕錯合物染料PC-3-Cl和PC-3-NCS的實驗步驟 43
2-4-1、iPr-pyS的合成 43
2-4-2、An-Ru-COOH的合成 44
2-4-3、PC-3-Cl的合成 45
2-4-4、PC-3-NCS的合成 45
2-5、有機染料NW-1的實驗步驟 46
2-5-1、Br-BT的合成 48
2-5-2、Br-BT-DPA的合成 48
2-5-3、Bpin-BT-DPA的合成 49
2-5-4、Br-OH的合成 50
2-5-5、BM-MBI的合成 51
2-5-6、MNP-Br的合成 52
2-5-7、MNP-BT-DPA的合成 53
2-5-8、HNP-BT-DPA的合成 53
2-5-9、NP-BT-DPA的合成 54
2-5-10、CHO-NP-BT-DPA的合成 55
2-5-11、NW-1的合成 56
2-6、有機染料NW-2之中間產物的實驗步驟 57
2-6-1、Br-PhNH2-DPA的合成 58
2-6-2、Br-HBTA-DPA的合成 59
2-6-3、Br-BTA-DPA的合成 59
2-6-4、Bpin-BTA-DPA的合成 60
2-7、儀器分析與樣品製備 61
2-7-1、核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 61
2-7-2、紫外光/可見光吸收光譜儀(Ultraviolet Visible Spectrophoto-meter, UV/Vis Spectrophotometer) 62
2-7-3、光致螢光光譜儀 (Photoluminescence Spectrometer) 64
2-7-4、電化學分析儀 (Electrochemical Analyzer) 65
2-7-5、傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, FTIR) 66
第三章 結果與討論 68
3-1、染料的結構鑑定 68
3-1-1、錯合物染料的1H NMR圖譜 68
3-1-2、錯合物染料紅外光穿透光譜圖 72
3-1-3、有機染料的1H NMR的結構比較圖 73
3-1-4、有機染料紅外光穿透光譜圖 75
3-2、染料的光致變色性質探討 76
3-2-1、錯合物染料的光致變色性質 76
3-2-2、釕錯合物染料的吸收光譜圖與放光光譜圖 78
3-2-3、有機染料的光致變色性質 81
3-2-4、有機染料的吸收光譜圖與放光光譜圖 83
3-3、染料的電化學性質與前置軌域能階 85
3-3-1、錯合物染料的方波伏安圖與前置軌域能階 85
3-3-2、有機染料的方波伏安圖與前置軌域能階 88
3-4、染料的前置軌域分布圖 89
3-4-1、錯合物染料 89
3-4-2、有機染料 92
3-5、以光致變色染料所敏化之DSC元件的光電表現探討 98
3-5-1、PC-3-Cl與PC-3-NCS所敏化之DSC元件的光伏參數 98
3-5-2、以有機染料所敏化之DSC元件的光伏參數 101
第四章、結論 102
參考文獻 103
附錄 111
參考文獻 1. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics 2017, 11 (6), 372-378.
2. Fritts, C. E., On the Fritts selenium cells and batteries. Journal of the Franklin Institute 1885, 119 (3), 221-232.
3. https://www.nrel.gov/pv/cell-efficiency.html 2024.
4. Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature energy 2017, 2 (5), 1-8.
5. Schindler, F.; Fell, A.; Müller, R.; Benick, J.; Richter, A.; Feldmann, F.; Krenckel, P.; Riepe, S.; Schubert, M. C.; Glunz, S. W., Towards the efficiency limits of multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells 2018, 185, 198-204.
6. Kayes, B. M.; Nie, H.; Twist, R.; Spruytte, S. G.; Reinhardt, F.; Kizilyalli, I. C.; Higashi, G. S. In 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, 2011 37th IEEE Photovoltaic Specialists Conference, IEEE: 2011; pp 000004-000008.
7. Nazeeruddin, M. K.; Grätzel, M., Transition metal complexes for photovoltaic and light emitting applications. Photofunctional Transition Metal Complexes 2007, 113-175.
8. Rahman, S.; Haleem, A.; Siddiq, M.; Hussain, M. K.; Qamar, S.; Hameed, S.; Waris, M., Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC advances 2023, 13 (28), 19508-19529.
9. Masud; Kim, H. K., Redox shuttle-based electrolytes for dye-sensitized solar cells: comprehensive guidance, recent progress, and future perspective. ACS Omega 2023, 8 (7), 6139-6163.
10. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y., Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews 2017, 46 (19), 5975-6023.
11. Cole, J. M.; Pepe, G.; Al Bahri, O. K.; Cooper, C. B., Cosensitization in dye-sensitized solar cells. Chemical reviews 2019, 119 (12), 7279-7327.
12. P. T. Hsiao, M. D. L., W. T. Hung, L. K. Huang, S. W. Shih, H. W. Chen. , Automated Manufacture Technology and Applications of Dye-sensitized Cells. 2019, 393, 154-160.
13. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261 (5559), 402-403.
14. O′regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature 1991, 353 (6346), 737-740.
15. Yun, S.; Lund, P. D.; Hinsch, A., Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy & Environmental Science 2015, 8 (12), 3495-3514.
16. Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano 2009, 3 (10), 3103-3109.
17. Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical communications 2015, 51 (88), 15894-15897.
18. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 6 (3), 242-247.
19. Shockley, W.; Queisser, H., Detailed balance limit of efficiency of p–n junction solar cells. In Renewable Energy, Routledge: 2018; pp Vol2_35-Vol2_54.
20. Kalyanasundaram, K.; Grätzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews 1998, 177 (1), 347-414.
21. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical Reviews 2010, 110 (11), 6595-6663.
22. Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C., Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry 2020, 22 (21), 7168-7218.
23. Ardo, S.; Meyer, G. J., Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews 2009, 38 (1), 115-164.
24. Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M., Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. Journal of the Chemical Society, Chemical Communications 1995, (1), 65-66.
25. Listorti, A.; O’regan, B.; Durrant, J. R., Electron transfer dynamics in dye-sensitized solar cells. Chemistry of Materials 2011, 23 (15), 3381-3399.
26. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Graetzel, M., Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. Journal of the American Chemical Society 1988, 110 (4), 1216-1220.
27. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
28. Nazeeruddin, M. K.; Zakeeruddin, S.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M., Acid− Base equilibria of (2, 2 ‘-Bipyridyl-4, 4 ‘-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry 1999, 38 (26), 6298-6305.
29. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
30. Wu, Y.; Zhu, W., Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews 2013, 42 (5), 2039-2058.
31. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z. s.; Tian, H., Organic D‐A‐π‐A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials 2011, 21 (4), 756-763.
32. Li, W.; Wu, Y.; Li, X.; Xie, Y.; Zhu, W., Absorption and photovoltaic properties of organic solar cell sensitizers containing fluorene unit as conjunction bridge. Energy & Environmental Science 2011, 4 (5), 1830-1837.
33. Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W., DA-π-A featured sensitizers bearing phthalimide and benzotriazole as auxiliary acceptor: effect on absorption and charge recombination dynamics in dye-sensitized solar cells. ACS Applied Materials & Interfaces 2012, 4 (3), 1822-1830.
34. Zhang, X.; Hou, L.; Samorì, P., Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nature Communications 2016, 7 (1), 11118.
35. Cheng, H.; Yoon, J.; Tian, H., Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coordination Chemistry Reviews 2018, 372, 66-84.
36. Schwartz, H.; Ruschewitz, U.; Heinke, L., Smart nanoporous metal–organic frameworks by embedding photochromic molecules—state of the art and future perspectives. Photochemical & Photobiological Sciences 2018, 17 (7), 864-873.
37. McClure, B. A.; Rack, J. J., Two-color reversible switching in a photochromic ruthenium sulfoxide complex. Angew. Chem., Int. Ed 2009, 48 (45), 8556-8558.
38. Nigel Corns, S.; Partington, S. M.; Towns, A. D., Industrial organic photochromic dyes. Coloration Technology 2009, 125 (5), 249-261.
39. Wu, W.; Wang, J.; Zheng, Z.; Hu, Y.; Jin, J.; Zhang, Q.; Hua, J., A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells. Scientific Reports 2015, 5 (1), 8592.
40. Castán, J.-M. A.; Mwalukuku, V. M.; Riquelme, A. J.; Liotier, J.; Huaulmé, Q.; Anta, J. A.; Maldivi, P.; Demadrille, R., Photochromic spiro-indoline naphthoxazines and naphthopyrans in dye-sensitized solar cells. Materials Chemistry Frontiers 2022, 6 (20), 2994-3005.
41. Huaulmé, Q.; Mwalukuku, V. M.; Joly, D.; Liotier, J.; Kervella, Y.; Maldivi, P.; Narbey, S.; Oswald, F.; Riquelme, A. J.; Anta, J. A., Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency. Nature Energy 2020, 5 (6), 468-477.
42. Liotier, J.; Mwalukuku, V. M.; Fauvel, S.; Riquelme, A. J.; Anta, J. A.; Maldivi, P.; Demadrille, R., Photochromic Naphthopyran Dyes Incorporating a Benzene, Thiophene, or Furan Spacer: Effect on Photochromic, Optoelectronic, and Photovoltaic Properties in Dye‐Sensitized Solar Cells. Solar RRL 2022, 6 (8), 2100929.
43. Mwalukuku, V. M.; Liotier, J.; Riquelme, A. J.; Kervella, Y.; Huaulmé, Q.; Haurez, A.; Narbey, S.; Anta, J. A.; Demadrille, R., Strategies to improve the photochromic properties and photovoltaic performances of naphthopyran dyes in dye‐sensitized solar cells. Advanced Energy Materials 2023, 13 (8), 2203651.
44. Garg, K.; Paris, S. I.; Rack, J. J., A Flexible Chelate Leads to Phototriggered Isomerization in an Osmium Sulfoxide Complex. European Journal of Inorganic Chemistry 2013, 2013 (7), 1142-1148.
45. Anuja, P.; Paira, P., Luminescent anticancer Ru (II)-arenebipyridine and phenanthroline complexes: Synthesis, characterization, DFT studies, biological interactions and cellular imaging application. Journal of Inorganic Biochemistry 2020, 208, 111099.
46. Dai, H.; Yang, J.; Ye, Z.; Liu, C.; Xu, B.; Shi, G.; Su, S.; Zhang, Y.; Chi, Z., Near‐Infrared Colorimetric and Ratiometric Fluorescence Sensor for Fluoride Ions. ChemistrySelect 2022, 7 (26), e202200777.
47. Damien, J.; Yann, K.; Renaud, D., Organic photochromic dyes capable of adapting transparency to different weather conditions for use in dye-sensitized solar cells, and uses thereof for dye-sensitized solar cells. 2017, 05 (22), EP2017-305597.
48. Wong, C.-L.; Cheng, Y.-H.; Poon, C.-T.; Yam, V. W.-W., Synthesis, photophysical, photochromic, and photomodulated resistive memory studies of dithienylethene-containing copper (I) diimine complexes. Inorganic Chemistry 2020, 59 (20), 14785-14795.
49. Kannan, P.; Karthick, N.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G., Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies. Journal of Molecular Structure 2017, 1139, 196-201.
50. Oh, K.-I.; Baiz, C. R., Empirical S= O stretch vibrational frequency map. The Journal of chemical physics 2019, 151 (23).
51. Li, Y.-S.; Li, S., FTIR Spectra of HSCH2CH2SH, CH3SCH2SH, and CH3SSCH3 in Argon and Nitrogen Matrices. Spectrochimica Acta Part A: Molecular Spectroscopy 1994, 50 (3), 509-519.
52. Barry, B.; Edwards, H.; Williams, A., Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands. Journal of Raman spectroscopy 1992, 23 (11), 641-645.
53. Reyes, Y. I. A.; Yang, K.-S.; Thang, H. V.; Coluccini, C.; Chen, S.-Y.; Chen, H.-Y. T., Mechanistic understanding of N2 activation: a comparison of unsupported and supported Ru catalysts. Faraday Discussions 2023, 243, 148-163.
54. Fedoseeva, M.; Delor, M.; Parker, S. C.; Sazanovich, I. V.; Towrie, M.; Parker, A. W.; Weinstein, J. A., Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes. Physical Chemistry Chemical Physics 2015, 17 (3), 1688-1696.
55. Imran, H.; Alam, A.; Dharuman, V.; Lim, S., Fabrication of enzyme-free and rapid electrochemical detection of glucose sensor based on ZnO rod and Ru doped carbon nitride modified gold transducer. Nanomaterials 2022, 12 (10), 1778.
56. Liu, K.-Y.; Ko, C.-Y.; Ho, K.-C.; Lin, K.-F., Synthesis and characterization of cross-linkable ruthenium dye with ion coordinating property for dye-sensitized solar cells. Polymer 2011, 52 (15), 3318-3324.
57. Mbese, J. Z.; Ajibade, P. A., Homonuclear tris-dithiocarbamato ruthenium (III) complexes as single-molecule precursors for the synthesis of ruthenium (III) sulfide nanoparticles. Journal of Sulfur Chemistry 2017, 38 (2), 173-187.
58. Deepa, M.; Agnihotry, S.; Gupta, D.; Chandra, R., Ion-pairing effects and ion–solvent–polymer interactions in LiN (CF3SO2)2–PC–PMMA electrolytes: a FTIR study. Electrochimica Acta 2004, 49 (3), 373-383.
59. Kam, W.; Liew, C.-W.; Lim, J.; Ramesh, S., Electrical, structural, and thermal studies of antimony trioxide-doped poly (acrylic acid)-based composite polymer electrolytes. Ionics 2014, 20, 665-674.
60. Ramesh, S.; Lu, S.-C., Effect of nanosized silica in poly (methyl methacrylate)–lithium bis (trifluoromethanesulfonyl) imide based polymer electrolytes. Journal of Power Sources 2008, 185 (2), 1439-1443.
61. Philip, D.; Eapen, A.; Aruldhas, G., Vibrational and surface enhanced Raman scattering spectra of sulfamic acid. Journal of solid state chemistry 1995, 116 (2), 217-223.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明