參考文獻 |
1. Koumoto, K. & Mori, T. Thermoelectric Nanomaterials. Materials Design and Applications, Springer
Series in Materials Science 182, 1–382 (2013).
2. Elsheikh, M. H. et al. A review on thermoelectric renewable energy: Principle parameters that
affect their performance. Renewable and Sustainable Energy Reviews 30, 337–355 (2014).
3. Zheng, X., Liu, C., Yan, Y. & Wang, Q. A review of thermoelectrics research–Recent developments
and potentials for sustainable and renewable energy applications. Renewable and Sustainable
Energy Reviews 32, 486–503 (2014).
4. Shu, G. et al. A review of waste heat recovery on two-stroke IC engine aboard ships. Renewable
and Sustainable Energy Reviews 19, 385–401 (2013).
5. Qin, Z., Zhang, H. & Qin, G. A Brief Perspective to the Development of Emerging Thermoelectric
Materials 2022.
6. Snyder, G. J. & Snyder, A. H. Figure of merit zT of a thermoelectric device defined from materials
properties. Energy & Environmental Science 10, 2280–2283 (2017).
7. Arivazhagan, N., Singh, S., Prakash, S. & Reddy, G. Investigation on AISI 304 austenitic stainless
steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction
welding. Materials & Design 32, 3036–3050 (2011).
8. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Materials 7, 105–114
(2008).
9. Zhao, L.-D., Dravid, V. P. & Kanatzidis, M. G. The panoscopic approach to high performance
thermoelectrics. Energy & Environmental Science 7, 251–268 (2014).
10. Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annual
Review of Materials Research 41, 399–431 (2011).
11. Possanzini, C. et al. Diffusion thermopower of a two-dimensional hole gas in SiGe in a quantum
Hall insulating state. Physical Review Letters 90, 176601 (2003).
12. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal
conductivity of silicon-germanium alloys: A first-principles study. Physical Review Letters 106,
045901 (2011).
13. Shi, H., Parker, D., Du, M.-H. & Singh, D. J. Connecting thermoelectric performance and topologicalinsulator
behavior: Bi2Te3 andBi2Te2Se from first principles. Physical Review Applied 3, 014004
(2015).
14. Li, G. et al. Superstrengthening Bi2Te3 through Nanotwinning. Physical Review Letters 119,
085501 (2017).
15. Skelton, J. M. et al. Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes
and Three-Phonon Interactions. Physical Review Letters 117, 075502 (2016).
16. Aseginolaza, U. et al. Phonon collapse and second-order phase transition in thermoelectric SnSe.
Physical Review Letters 122, 075901 (2019).
17. Nishimura, T. et al. Large enhancement of thermoelectric efficiency due to a pressure-induced
lifshitz transition in SnSe. Physical Review Letters 122, 226601 (2019).
18. Dusastre, V. Materials for sustainable energy: a collection of peer-reviewed research and review
articles from Nature Publishing Group (World Scientific, 2010).
19. Johnsen, S. et al. Nanostructures boost the thermoelectric performance of PbS. Journal of the
American Chemical Society 133, 3460–3470 (2011).
20. Dusetty, V. Numerical Simulation of Thermoelectric Transport in Bulk and Nanostructured SiSn
Alloys (2020).
21. Newman, R. A review of the growth and structure of thin films of germanium and silicon. Microelectronics
Reliability 3, 121–138 (1964).
22. Balk, P. Surface Properties of Oxidized Germanium-Doped Silicon. Journal of the Electrochemical
Society 118, 494 (1971).
23. Steele, M. & Rosi, F. Thermal conductivity and thermoelectric power of Germanium-Silicon alloys.
Journal of Applied Physics 29, 1517–1520 (1958).
24. He, R. et al. Thermoelectric properties of silicon and recycled silicon sawing waste. Journal of
Materiomics 5, 15–33 (2019).
25. Basu, R. & Singh, A. High temperature Si-Ge alloy towards thermoelectric applications: A comprehensive
review. Materials Today Physics 21, 100468 (2021).
26. Lee, H. et al. Effects of nanoscale porosity on thermoelectric properties of SiGe. Journal of Applied
Physics 107 (2010).
27. Bhandari, C. & Rowe, D. Boundary scattering of phonons. Journal of Physics C: Solid State
Physics 11, 1787 (1978).
28. Savvides, N. & Rowe, D. Altering the thermal conductivity of phosphorus-doped Si-Ge alloys by
the precipitation of dopant. Journal of Physics D: Applied Physics 15, 299 (1982).
29. Perez-Taborda, J. A., Muñoz Rojo, M., Maiz, J., Neophytou, N. & Martin-Gonzalez, M. Ultra-low
thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Scientific
Reports 6, 32778 (2016).
30. Lee, Y., Pak, A. J. & Hwang, G. S. What is the thermal conductivity limit of silicon germanium
alloys? Physical Chemistry Chemical Physics 18, 19544–19548 (2016).
31. Ravindra, N. et al. Thermoelectric Properties of Silicon-Germanium Alloys. Thermoelectrics:
Fundamentals, Materials Selection, Properties, and Performance, 49–67 (2019).
32. D’costa, V. R. et al. Optical critical points of thin-film Ge1 – ySny alloys: a comparative Ge1 – ySny/Ge1 – xSix
study. Physical Review B 73, 125207 (2006).
33. Moontragoon, P. et al. Electronic properties calculation of Ge1 – x – ySixSny ternary alloy and nanostructure.
Journal of Non-Crystalline Solids 358, 2096–2098 (2012).
34. Soref, R. A. & Perry, C. H. Predicted band gap of the new semiconductor SiGeSn. Journal of
Applied Physics 69, 539–541 (1991).
35. Basu, R. et al. Improved thermoelectric performance of hot pressed nanostructured n-type SiGe
bulk alloys. Journal of Materials Chemistry A 2, 6922–6930 (2014).
36. Rowe, D., Shukla, V. & Savvides, N. Phonon scattering at grain boundaries in heavily doped
fine-grained silicon–germanium alloys. Nature 290, 765–766 (1981).
37. Lee, Y. & Hwang, G. S. Molecular dynamics investigation of the thermal conductivity of ternary
silicon-germanium-tin alloys. Journal of Physics D: Applied Physics 50, 494001 (2017).
38. Moontragoon, P., Ikonić, Z. & Harrison, P. Band structure calculations of Si-Ge-Sn alloys: achieving
direct band gap materials. Semiconductor science and technology 22, 742 (2007).
39. Wang, D., Liu, L., Chen, M. & Zhuang, H. Electrical and thermal transport properties of mediumentropy
SiyGeySnx alloys. Acta Materialia 199, 443–452 (2020).
40. Hahn, K. R., Melis, C., Bernardini, F. & Colombo, L. Intrinsic thermoelectric figure of merit of
bulk compositional SiGe alloys: A first-principles study. Physical Review Materials 5, 065403
(2021).
41. Madsen, G. K., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures
and calculating semi-classical transport coefficients. Computer Physics Communications
231, 140–145 (2018).
42. Kestyn, J. & Polizzi, E. From Fundamental First-Principle Calculations to Nanoengineering Applications:
A Review of the NESSIE Project. IEEE Nanotechnology Magazine 14, 52–C3 (2020).
43. Dirac, P. A. M. Quantum mechanics of many-electron systems. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character 123, 714–733
(1929).
44. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Physical Review 136, B864 (1964).
45. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects.
Physical Review 140, A1133 (1965).
46. Sholl, D. S. & Steckel, J. A. Density functional theory: a practical introduction (John Wiley &
Sons, 2022).
47. Mattsson, A. E., Schultz, P. A., Desjarlais, M. P., Mattsson, T. R. & Leung, K. Designing meaningful
density functional theory calculations in materials science—a primer. Modelling and Simulation
in Materials Science and Engineering 13, R1 (2004).
48. Simón, L. & Goodman, J. M. How reliable are DFT transition structures? Comparison of GGA,
hybrid-meta-GGA and meta-GGA functionals. Organic & Biomolecular Chemistry 9, 689–700
(2011).
49. Lin, I.-C., Seitsonen, A. P., Tavernelli, I. & Rothlisberger, U. Structure and Dynamics of Liquid
Water from ab Initio Molecular Dynamics Comparison of BLYP, PBE, and revPBE Density Functionals
with and without van der Waals Corrections. Journal of Chemical Theory and Computation
8, 3902–3910 (2012).
50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical Review B 54, 11169 (1996).
51. Van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad
42, 13–18 (2013).
52. Zunger, A., Wei, S.-H., Ferreira, L. & Bernard, J. E. Special quasirandom structures. Physical
Review Letters 65, 353 (1990).
53. Hass, K., Davis, L. & Zunger, A. Electronic structure of random Al0.5Ga0.5 As alloys: Test of the
‘‘special-quasirandom-structures’’description. Physical Review B 42, 3757 (1990).
54. Shin, D., Arróyave, R., Liu, Z.-K. & Van de Walle, A. Thermodynamic properties of binary hcp
solution phases from special quasirandom structures. Physical Review B 74, 024204 (2006).
55. Shin, D., Van De Walle, A., Wang, Y. & Liu, Z.-K. First-principles study of ternary fcc solution
phases from special quasirandom structures. Physical Review B 76, 144204 (2007).
56. Van de Walle, A., Ceder, G. & Waghmare, U. First-principles computation of the vibrational entropy
of ordered and disordered Ni3Al. Physical Review Letters 80, 4911 (1998).
57. Shin, D. & Liu, Z.-K. Enthalpy of mixing for ternary fcc solid solutions from special quasirandom
structures. Calphad 32, 74–81 (2008).
58. Jiang, C., Stanek, C., Sickafus, K. & Uberuaga, B. First-principles prediction of disordering tendencies
in pyrochlore oxides. Physical Review B 79, 104203 (2009).
59. Van De Walle, A. Multicomponent multisublattice alloys, nonconfigurational entropy and other
additions to the Alloy Theoretic Automated Toolkit. Calphad 33, 266–278 (2009).
60. Singh, D. J. & Du, M.-H. Density functional study of LaFeAsO1 – xFx: a low carrier density superconductor
near itinerant magnetism. Physical Review Letters 100, 237003 (2008).
61. May, A. F., Singh, D. J. & Snyder, G. J. Influence of band structure on the large thermoelectric
performance of lanthanum telluride. Physical Review B 79, 153101 (2009).
62. Ouardi, S. et al. Electronic transport properties of electron-and hole-doped semiconducting C1b
Heusler compounds: NiTi1 – xMxSn(M––
Sc, V). Physical Review B 82, 085108 (2010).
63. Parker, D., Chen, X. & Singh, D. J. High three-dimensional thermoelectric performance from
low-dimensional bands. Physical Review Letters 110, 146601 (2013).
64. Hong, A. et al. Full-scale computation for all the thermoelectric property parameters of half-
Heusler compounds. Scientific Reports 6, 22778 (2016).
65. He, J. et al. Ultralow thermal conductivity in full Heusler semiconductors. Physical Review Letters
117, 046602 (2016).
66. Zhang, J. et al. Designing high-performance layered thermoelectric materials through orbital engineering.
Nature Communications 7, 10892 (2016).
67. Ho, C. & Powell, R. u. Liley, PE: Thermal Conductivity of the Elements: A Comprehensive Review.
Journal of Physical and Chemical Reference Data 3 (1974).
68. Khatami, S. & Aksamija, Z. Lattice thermal conductivity of the binary and ternary group-IV alloys
Si-Sn, Ge-Sn, and Si-Ge-Sn. Physical Review Applied 6, 014015 (2016).
69. Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py.
J. Phys. Condens. Matter 35, 353001 (2023).
70. Togo, A. First-principles Phonon Calculations with Phonopy and Phono3py. J. Phys. Soc. Jpn. 92,
012001 (2023).
71. Hill, R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society.
Section A 65, 349 (1952).
72. Voigt, W. Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik) (BG Teubner, 1910).
73. Reuss, A. Mittelung von Fließgrenze und elastischen Eigenschaften. Z. angew. Math. Mech. Bd 9,
49 (1929).
74. Marmier, A. et al. ElAM: A computer program for the analysis and representation of anisotropic
elastic properties. Computer Physics Communications 181, 2102–2115 (2010).
75. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical
Review Letters 77, 3865 (1996).
76. Perdew, J. P. Density functional theory and the band gap problem. International Journal of Quantum
Chemistry 28, 497–523 (1985).
77. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchangecorrelation
potential. Physical Review Letters 102, 226401 (2009).
78. Molski, K. & Glinka, G. A method of elastic-plastic stress and strain calculation at a notch root.
Materials Science and Engineering 50, 93–100 (1981).
79. Madsen, G. K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities.
Computer Physics Communications 175, 67–71 (2006).
80. Hao, S., Dravid, V. P., Kanatzidis, M. G. & Wolverton, C. Research Update: Prediction of high
figure of merit plateau in SnS and solid solution of (Pb, Sn) S. Apl Materials 4 (2016).
81. Zhou, J.-J. & Bernardi, M. Ab initio electron mobility and polar phonon scattering in GaAs. Physical
Review B 94, 201201 (2016).
82. Ding, G., Gao, G. & Yao, K. High-efficient thermoelectric materials: The case of orthorhombic
IV-VI compounds. Scientific reports 5, 9567 (2015).
83. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scripta Materialia
108, 1–5 (2015).
84. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and
morphology data. Journal of Applied Crystallography 44, 1272–1276 (2011).
85. Windl, W. & Chien, S.-C. Free-Energy Parameterization and Thermodynamics in Si–Ge–Sn
Alloys. Physica Status Solidi (b) 259, 2100590. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/pssb.202100590. https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.202100590
(2022).
86. Holland, M. Analysis of lattice thermal conductivity. Physical review 132, 2461 (1963).
87. Dorner, F., Sukurma, Z., Dellago, C. & Kresse, G. Melting Si: beyond density functional theory.
Physical Review Letters 121, 195701 (2018).
88. Domenicali, C. Thermoelectric Power and Resistivity of Solid and Liquid Germanium in the Vicinity
of Its Melting Point. Journal of Applied Physics 28, 749–753 (1957).
89. Fraizier, E., Nadal, M.-H. & Oltra, R. Noncontact determination of the elastic moduli of β-Sn up
and through the melting point. Journal of Applied Physics 93, 649–654 (2003).
90. Shimura, Y., Okado, M., Motofuji, T. & Tatsuoka, H. SiSn mediated formation of polycrystalline
SiGeSn. Japanese Journal of Applied Physics 61, SC1008 (2022).
91. Peng, Y. et al. Realizing high thermoelectric performance in p-type Si1 – x – yGexSny thin films at
ambient temperature by Sn modulation doping. Applied Physics Letters 117 (2020).
92. Tomita, M., Ogasawara, M., Terada, T. & Watanabe, T. Development of interatomic potential of
Ge(1−x−y)SixSny ternary alloy semiconductors for classical lattice dynamics simulation. Japanese
Journal of Applied Physics 57, 04FB04. https://dx.doi.org/10.7567/JJAP.57.04FB04 (Mar. 2018).
93. Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev.
B 91, 094306 (9 Mar. 2015).
94. Sajjad, M., Mahmood, Q., Singh, N. & Larsson, J. A. Ultralow Lattice Thermal Conductivity in
Double Perovskite Cs2PtI6: A Promising Thermoelectric Material. ACS Applied Energy Materials
3, 11293–11299. eprint: https://doi.org/10.1021/acsaem.0c02236. https://doi.org/10.1021/acsaem.
0c02236 (2020).
95. Mouhat, F. & Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal
systems. Physical Review B 90, 224104 (2014).
96. McSkimin, H. Measurement of elastic constants at low temperatures by means of ultrasonic waves–
data for silicon and germanium single crystals, and for fused silica. Journal of Applied Physics
24, 988–997 (1953).
97. McSkimin, H. & Andreatch Jr, P. Elastic moduli of silicon vs hydrostatic pressure at 25.0˚C and-
195.8˚C. Journal of Applied Physics 35, 2161–2165 (1964).
98. Kang, K. & Cai, W. Brittle and ductile fracture of semiconductor nanowires–molecular dynamics
simulations. Philosophical Magazine 87, 2169–2189 (2007).
99. Wortman, J. & Evans, R. Young’s modulus, shear modulus, and Poisson’s ratio in silicon and
germanium. Journal of Applied Physics 36, 153–156 (1965).
100. Murugasami, R., Vivekanandhan, P., Kumaran, S., Tharakan, J., et al. Synergetic enhancement of
thermoelectric and mechanical properties of n-type SiGe-P alloy through solid state synthesis and
spark plasma sintering. Materials Research Bulletin 118, 110483 (2019). |