參考文獻 |
(1) Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature 1999, 402 (6759), 276-279.
(2) Yaghi, O. M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
(3) Wang, H.; Zhu, Q.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52-80.
(4) Wen, Y.; Zhang, P.; Sharma, V. K.; Ma, X.; Zhou, H. Metal-organic frameworks for environmental applications. Cell Reports Physical Science 2021, 2 (2).
(5) McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: metal-organic frameworks for biological and medical applications. Angewandte Chemie 2010, 49 36, 6260-6266.
(6) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
(7) Li, P.; Cheng, F.-F.; Xiong, W.; Zhang, Q. New synthetic strategies to prepare metal–organic frameworks. Inorganic chemistry frontiers 2018, 5, 2693-2708.
(8) Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J. Microwave-assisted synthesis of metal–organic frameworks. Dalton Transactions 2011, 40 (2), 321-330.
(9) Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
(10) Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical communications 2008, (31), 3642-3644.
(11) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
(12) Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews 2012, 112 (2), 933-969.
(13) Ma, Y.; Zhang, L.; Tang, C. Property of Nanoporous Metal-Organic Frameworks at Different Synthesis Temperature. Advanced Materials Research 2012, 427, 123 - 127.
(14) Armstrong, M.; Senthilnathan, S.; Balzer, C. J.; Shan, B.; Chen, L.; Mu, B. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis. Ultrasonics sonochemistry 2017, 34, 365-370.
(15) Bosch, M.; Sun, X.; Yuan, S.; Chen, Y. P.; Wang, Q.; Wang, X.; Zhou, H. C. Modulated Synthesis of Metal‐Organic Frameworks through Tuning of the Initial Oxidation State of the Metal. European Journal of Inorganic Chemistry 2016, 2016 (27), 4368-4372.
(16) Pakamorė, I.; Rousseau, J.; Rousseau, C.; Monflier, E.; Szilágyi, P. Á. An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green chemistry 2018, 20 (23), 5292-5298.
(17) Moellmer, J.; Celer, E. B.; Luebke, R.; Cairns, A. J.; Staudt, R.; Eddaoudi, M.; Thommes, M. Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF. Microporous and Mesoporous Materials 2010, 129, 345-353.
(18) Li, J.; Ma, Y.; McCarthy, M. C.; Sculley, J. P.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews 2011, 255, 1791-1823.
(19) Daliran, S.; Oveisi, A. R.; Peng, Y.; López‐Magano, A.; Khajeh, M.; Mas‐Ballesté, R.; Alemán, J.; Luque, R.; García, H. Metal-organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions. Chemical Society reviews 2022.
(20) Reddy, C. V.; Reddy, K. R.; Harish, V. V. N.; Shim, J.-J.; Shankar, M. V.; Shetti, N. P.; Aminabhavi, T. M. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: Synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. International Journal of Hydrogen Energy 2020, 45, 7656-7679.
(21) Shen, K.; Chen, X.; Chen, J.; Li, Y. Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis 2016, 6, 5887-5903.
(22) Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020, 12.
(23) Koo, W. T.; Jang, J.-S.; Kim, I. D. Metal-Organic Frameworks for Chemiresistive Sensors. Chem 2019.
(24) Lv, M.; Zhou, W.; Tavakoli, H.; Bautista, C.; Xia, J.; Wang, Z.; Li, X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosensors & bioelectronics 2020, 176, 112947.
(25) Li, H.; Zhao, S. N.; Zang, S.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chemical Society reviews 2020.
(26) Fang, X.; Zong, B.; Mao, S. Metal–organic framework-based sensors for environmental contaminant sensing. Nano-micro letters 2018, 10, 1-19.
(27) Tan, L.-L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y. Zn(2+)-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small 2015, 11 31, 3807-3813.
(28) Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X. One-pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. Journal of the American Chemical Society 2016, 138 3, 962-968.
(29) Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. Journal of materials chemistry. B 2018, 6 5, 707-717.
(30) Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Advanced Materials 2017, 29 (23), 1606134.
(31) Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework–quantum dot (QD@ MOF) composites. Coordination Chemistry Reviews 2016, 307, 267-291.
(32) Duan, H.-H.; Zhao, Z.; Lu, J.; Hu, W.; Zhang, Y.; Li, S.; Zhang, M. F.; Zhu, R.; Pang, H. When Conductive MOFs Meet MnO2: High Electrochemical Energy Storage Performance in an Aqueous Asymmetric Supercapacitor. ACS applied materials & interfaces 2021.
(33) Stock, N. Metal‐organic frameworks: aluminium‐based frameworks. Encyclopedia of Inorganic and Bioinorganic Chemistry 2011, 1-16.
(34) Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W.; Kaskel, S. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials 2009, 122, 93-98.
(35) Wu, T.; Prasetya, N.; Li, K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science 2020, 615, 118493.
(36) Serre, C.; Bourrelly, S.; Vimont, A.; Ramsahye, N. A.; Maurin, G.; Llewellyn, P. L.; Daturi, M.; Filinchuk, Y.; Leynaud, O.; Barnes, P. An explanation for the very large breathing effect of a metal–organic framework during CO2 adsorption. Advanced materials 2007, 19 (17), 2246-2251.
(37) Finsy, V.; Ma, L.; Alaerts, L.; De Vos, D.; Baron, G.; Denayer, J. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework. Microporous and Mesoporous Materials 2009, 120 (3), 221-227.
(38) Boutin, A.; Coudert, F.-X.; Springuel-Huet, M.-A.; Neimark, A. V.; Férey, G.; Fuchs, A. H. The behavior of flexible MIL-53 (Al) upon CH4 and CO2 adsorption. The Journal of Physical Chemistry C 2010, 114 (50), 22237-22244.
(39) Tehrani, M. S.; Zare‐Dorabei, R. Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68(Al): central composite design optimization. RSC Advances 2016, 6, 27416-27425.
(40) Wu, S.-c.; You, X.; Yang, C.; Cheng, J. Adsorption behavior of methyl orange onto an aluminum-based metal organic framework, MIL-68(Al). Water science and technology : a journal of the International Association on Water Pollution Research 2017, 75 12, 2800-2810.
(41) Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. Journal of the American Chemical Society 2010, 132 9, 2991-2997.
(42) Zhong, G.; Liu, D.; Zhang, J. Applications of porous metal–organic framework MIL-100 (M)(M= Cr, Fe, Sc, Al, V). Crystal Growth & Design 2018, 18 (12), 7730-7744.
(43) Srirambalaji, R.; Hong, S.; Natarajan, R.; Yoon, M.; Hota, R.; Kim, Y.; Ho Ko, Y.; Kim, K. Tandem catalysis with a bifunctional site-isolated Lewis acid-Brønsted base metal-organic framework, NH2-MIL-101(Al). Chemical communications 2012, 48 95, 11650-11652.
(44) Pérez‐Cejuela, H. M.; Carrasco‐Correa, E. J.; Shahat, A.; Simó‐Alfonso, E. F.; Herrero‐Martínez, J. M. Incorporation of metal‐organic framework amino‐modified MIL‐101 into glycidyl methacrylate monoliths for nano LC separation. Journal of separation science 2019, 42 (4), 834-842.
(45) Alvarez, E.; Guillou, N.; Martineau, C.; Bueken, B.; Van de Voorde, B.; Le Guillouzer, C.; Fabry, P.; Nouar, F.; Taulelle, F.; De Vos, D. E.; et al. The structure of the aluminum fumarate metal-organic framework A520. Angewandte Chemie 2015, 54 12, 3664-3668.
(46) Kummer, H.; Jeremias, F.; Warlo, A.; Füldner, G.; Fröhlich, D.; Janiak, C.; Gläser, R.; Henninger, S. K. A Functional Full-Scale Heat Exchanger Coated with Aluminum Fumarate Metal–Organic Framework for Adsorption Heat Transformation. Industrial & Engineering Chemistry Research 2017, 56, 8393-8398.
(47) Wang, Y.; Qu, Q.; Liu, G.; Battaglia, V. S.; Zheng, H. Aluminum fumarate-based metal organic frameworks with tremella-like structure as ultrafast and stable anode for lithium-ion batteries. Nano Energy 2017, 39, 200-210.
(48) Tan, B.; Luo, Y.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. In situ synthesis and performance of aluminum fumarate metal–organic framework monolithic adsorbent for water adsorption. Industrial & Engineering Chemistry Research 2019, 58 (34), 15712-15720.
(49) Koeller, K. M.; Wong, C.-H. Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-240.
(50) van Dongen, S. F.; Elemans, J. A.; Rowan, A. E.; Nolte, R. J. Processive catalysis. Angewandte Chemie International Edition 2014, 53 (43), 11420-11428.
(51) Strohmeier, G. A.; Pichler, H.; May, O.; Gruber-Khadjawi, M. Application of designed enzymes in organic synthesis. Chemical reviews 2011, 111 (7), 4141-4164.
(52) Franssen, M. C.; Steunenberg, P.; Scott, E. L.; Zuilhof, H.; Sanders, J. P. Immobilised enzymes in biorenewables production. Chemical Society Reviews 2013, 42 (15), 6491-6533.
(53) Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: an update. Journal of chemical biology 2013, 6, 185-205.
(54) Klibanov, A. M. Immobilized enzymes and cells as practical catalysts. Science 1983, 219 (4585), 722-727.
(55) Guisan, J. M. Immobilization of enzymes and cells; Springer, 2006.
(56) Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnology advances 2012, 30 3, 489-511.
(57) Ju-xi, H. Research progress in lipase immobilization. Science and Technology of Food Industry 2011.
(58) Norouzian, D. Enzyme immobilization: the state of art in biotechnology. Iranian Journal of Biotechnology 2003, 1, 197-206.
(59) Garcia-Quinto, E.; Aranda-Cañada, R.; García-García, P.; Fernández-Lorente, G. Use of potential immobilized enzymes for the modification of liquid foods in the food industry. Processes 2023, 11 (6), 1840.
(60) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
(61) Liang, J.; Liang, K. Biocatalytic metal–organic frameworks: prospects beyond bioprotective porous matrices. Advanced Functional Materials 2020, 30 (27), 2001648.
(62) Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C.-W. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
(63) Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C.-W.; Tsung, C.-K. Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
(64) Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H. Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature communications 2019, 10 (1), 5002.
(65) Xia, H.; Li, N.; Zhong, X.; Jiang, Y. Metal-organic frameworks: a potential platform for enzyme immobilization and related applications. Frontiers in Bioengineering and Biotechnology 2020, 8, 695.
(66) Mayer, S. F.; Kroutil, W.; Faber, K. Enzyme-initiated domino (cascade) reactions. Chemical Society Reviews 2001, 30, 332-339.
(67) Schrittwieser, J. H.; Velikogne, S.; Hall, M.; Kroutil, W. Artificial Biocatalytic Linear Cascades for Preparation of Organic Molecules. Chemical reviews 2018, 118 1, 270-348.
(68) Sperl, J. M.; Sieber, V. Multienzyme Cascade Reactions Status and Recent Advances. Acs Catalysis 2018, 8 (3), 2385-2396.
(69) Hwang, E. T.; Lee, S. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catalysis 2019.
(70) Walsh, C. T.; Moore, B. S. Enzymatic Cascade Reactions in Biosynthesis. Angewandte Chemie 2019, 58 21, 6846-6879.
(71) Manoochehri, H.; Hosseini, N. F.; Saidijam, M.; Taheri, M.; Rezaee, H.; Nouri, F. A review on invertase: Its potentials and applications. Biocatalysis and agricultural biotechnology 2020, 25, 101599.
(72) Kulshrestha, S.; Tyagi, P.; Sindhi, V.; Yadavilli, K. S. Invertase and its applications – A brief review. Journal of Pharmacy Research 2013, 7, 792-797.
(73) Kotwal, S. M.; Shankar, V. Immobilized invertase. Biotechnology advances 2009, 27 4, 311-322.
(74) Veana, F.; Flores-gallegos, A. C.; González-Montemayor, Á.-M.; Michel-Michel, M. R.; López-López, L. I.; Aguilar-Zárate, P.; Ascacio-Valdés, J. A.; Rodríguez‐Herrera, R. Invertase: An Enzyme with Importance in Confectionery Food Industry. 2018.
(75) Michaelis, L.; Menten, M. L. Die kinetik der invertinwirkung. Biochem. z 1913, 49 (333-369), 352.
(76) Elango, D.; Rajendran, K.; Van der Laan, L.; Sebastiar, S.; Raigne, J. G.; Thaiparambil, N. A.; El haddad, N.; Raja, B.; Wang, W.; Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Frontiers in Plant Science 2022, 13.
(77) Xu, G.; Xing, W.; Li, T.; Ma, Z.; Liu, C.; Jiang, N.; Luo, L. Effects of dietary raffinose on growth, non‐specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt ♀ × A. schrenckii Brandt ♂). Fish & Shellfish Immunology 2018, 72, 237–246.
(78) Kanwal, F.; Ren, D.; Kanwal, W.; Ding, M.; Su, J.; Shang, X. The potential role of non-digestible Raffinose family oligosaccharides as prebiotics. Glycobiology 2023.
(79) Casimiro, M. H.; Ferreira, L. M.; Leal, J. P.; Pereira, C. C. L.; Monteiro, B. Ionizing radiation for preparation and functionalization of membranes and their biomedical and environmental applications. Membranes 2019, 9 (12), 163.
(80) Swinehart, D. F. The beer-lambert law. Journal of chemical education 1962, 39 (7), 333.
(81) Salame, P. H.; Pawade, V. B.; Bhanvase, B. A. Characterization tools and techniques for nanomaterials. In Nanomaterials for green energy, Elsevier, 2018; pp 83-111.
(82) Tehranipoor, M.; Nalla Anandakumar, N.; Farahmandi, F. Scanning Electron Microscope Training. In Hardware Security Training, Hands-on!, Springer International Publishing, 2023; pp 293-318.
(83) Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character 1913, 89 (610), 248-277.
(84) Bragg, W. H.; Bragg, W. L. X rays and crystal structure; Bell, 1915.
(85) Epp, J. X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Elsevier, 2016; pp 81-124.
(86) Fischer, E. R.; Hansen, B. T.; Nair, V.; Hoyt, F. H.; Dorward, D. W. Scanning Electron Microscopy. Current Protocols in Microbiology 2012, 25.
(87) Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. 2018.
(88) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976, 72 (1-2), 248-254.
(89) Lever, M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochemical medicine 1973, 7 2, 274-281.
(90) Schägger, H. Tricine–sds-page. Nature protocols 2006, 1 (1), 16-22. |