博碩士論文 111324077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:197 、訪客IP:3.22.81.80
姓名 莊芮綺(Jui-Chi Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 研究膜內臨界行為對膜間融合過程的影響
(Investigating the Influence of the Intramembrane Critical Behavior on the Progress of the Intermembrane Fusion Process)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-31以後開放)
摘要(中) 膜融合是一種重要的生物現象,指兩個或多個原本獨立的脂雙層膜融合為一體的過程,這種現象廣泛存在於各種生物環境中,如胞吞作用(endocytosis)、胞吐作用(exocytosis)、細胞與細胞間(cell-to-cell)的融合。雖然我們先前的研究揭示了膜內混溶性的臨界波動(critical fluctuations)(一種當系統接近其臨界點時會出現的短暫和局部的組成域(domain)現象)可能會阻礙融合,但在融合過程的哪步驟受到影響仍不清楚。為了解決這個問題,我們必須準確地辨識臨界波動在融合過程中的影響時機。為此,我們採用螢光共振能量轉移(fluorescence resonance energy transfer, FRET)技術來檢查兩個融合膜中脂質分子的混合情形。當兩個螢光分子(供體(donor)與受體(acceptor))靠近時,供體分子的激發能量可以轉移到受體分子,使受體發出螢光,此技術對供體和受體之間的距離非常敏感,因此可以用來測量分子間的距離變化。在本實驗中,我們利用由低熔點脂質1,2-dioleoyi-sn-glycero-3-phosphocholine (DOPC) 、高熔點脂質1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)與膽固醇(cholesterol)所組成的仿生膜進行研究,因為它們的成分與細胞膜相似。透過對不同成分的脂質進行實驗,我們發現在液態單相中,隨著DSPC增加使組成接近液態有序相,脂質混合程度有增加的趨勢。我們認為臨界波動可能是透過水合排斥力來(hydration force)阻礙膜與膜之間相互靠近來影響融合進行,而不是對融合中間體結構(stalk)或融合孔的形成造成影響。而在液-液共存相中,脂質混合程度不隨膽固醇的比例增加而變化。我們推測促進莖結構的形成與水合排斥力呈現相反作用且互相影響,所以推斷兩者會互相抵銷使脂質混合無趨勢變化。
摘要(英) Membrane fusion is a fundamental biological process wherein individual membranes coalesce into a single entity, a pervasive phenomenon in various biological contexts including endocytosis, exocytosis, and cell-to-cell fusion. While our prior research has unveiled that the critical fluctuations in miscibility (a critical phenomenon which manifesters as short-lived and localized compositional domain formation when a system is in the close proximity of its critical point) within membranes might impede fusion, the underlying mechanism for this correlation remain elusive. To resolve this issue, it is imperative to precisely discern when during the fusion process the critical fluctuations exert their influence. To this end, we employ fluorescence resonance energy transfer (FRET), a technique sensitive to the distance between two energy-exchanging fluorescent probes, to scrutinize the fusion step where the lipid molecules in two coalescing membranes start mixing together, in the presence and absence of the critical fluctuations. We utilize biomimetic membranes composed of the low melting temperature lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), high melting temperature lipid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and cholesterol for our study because of their compositional similarity to cell membranes. Through experiments on different lipid compositions, we found that in a single liquid phase, as the DSPC increases and the composition approaches the liquid ordered phase, the extent of lipid mixing tends to increase. We speculate that critical fluctuations may influence membrane fusion by preventing the membranes from approaching each other through hydration repulsive force, rather than affecting the formation of the fusion intermediate structure (stalk) or the fusion pore. In the liquid-liquid coexistence phase, the extent of lipid mixing does not change with an increasing proportion of cholesterol. We speculate that the promotion of stalk formation and hydration forces have opposite effects and influence each other, leading to the cancellation of their effects, resulting in no significant change in lipid mixing.
關鍵字(中) ★ 臨界波動
★ 膜融合
★ 螢光共振能量轉移
關鍵字(英) ★ critical fluctuations
★ membrane fusion
★ fluorescence resonance energy transfer, FRET
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiv
第一章、緒論 1
1-1細胞膜 (Cell membrane) 2
1-2脂筏 (Lipid rafts) 4
1-3 相分離 (Phase separation) 6
1-4 臨界現象 (Critical phenomena) 9
1-5脂質 13
1-5-1磷脂質 (Phospholipid) 13
1-5-2脂質體 (Liposome) 15
1-6 膜融合 17
1-6-1 膜融合的機制 19
1-6-2 脂質混合與內容物混合 21
1-7 研究動機 (Motivation) 23
第二章、材料與方法 24
2-1實驗材料 24
2-1-1磷脂質 24
2-1-2螢光磷脂質 28
2-1-3 緩衝溶液 30
2-1-4 其他材料 31
2-2實驗器材與儀器 32
2-3樣品製備 33
2-3-1不含染劑的脂質體製備 33
2-3-2含有染劑的脂質體製備 35
2-4動態光散射儀 (Dynamic light scattering, DLS) 38
2-4-1動態光散射儀測量原理 38
2-4-2動態光散射儀測量實驗流程 40
2-5螢光光譜儀 (Fluorescence spectroscopy) 41
2-5-1螢光光譜原理 41
2-5-2膜融合的量測 42
2-5-3膜融合實驗流程 45
2-6小角度X光散射 (Small angle X-ray scattering, SAXS) 49
2-6-1小角度X光散射原理 49
2-6-2小角度X光散射實驗流程 51
2-6-3小角度X光散射數據處理 52
第三章、實驗結果 55
3-1 脂質體粒徑大小與分佈 55
3-2 脂質體的結構型態及膜厚 62
3-3 臨界現象與膜融合 68
3-3-1臨界點左側組成較接近液態無序相脂質混合程度 69
3-3-2臨界點右側組成較接近液態有序相脂質混合程度 73
3-3-3 液-液共存相脂質混合程度 78
第四章、結果討論 82
4-1 脂質體膜厚與臨界現象 82
4-2 膜融合與臨界現象 84
第五章、結論 88
參考資料 89
附錄一、擬合小角度X光散射Matlab code 97
附錄二、膜融合螢光強度隨時間的變化 102
附錄三、各組成膜融合的螢光光譜 103
參考文獻 [1] Ko, T. H., & Chen, Y. F. “Correlation between the In-Plane Critical Behavior and Out-of-Plane Interaction of Ternary Lipid Membranes.” Membranes. 13, 2022, 6.
[2] Keren, K. “Cell motility: the integrating role of the plasma membrane.” European Biophysics Journal. 40, 2011, 1013-1027.
[3] Laude, A. J., & Prior, I. A. “Plasma membrane microdomains: organization, function and trafficking.” Molecular Membrane Biology. 21, 2004, 193-205.
[4] Lombard, J. “Once upon a time the cell membranes: 175 years of cell boundary research.” Biology Direct. 9, 2014, 1-35.
[5] Simons, K., & Vaz, W. L. “Model systems, lipid rafts, and cell membranes.” Annual Review of Biophysics and Biomolecular Structure. 33, 2004, 269-295.
[6] Tong, Y. C. “The role of cholesterol in prostatic diseases.” Urological Science, 22, 2011, 97-102.
[7] Dharani, K. The biology of thought: A neuronal mechanism in the generation of thought-A new molecular model. Academic Press. 2014.
[8] Rajendran, L., & Simons, K. “Lipid rafts and membrane dynamics.” Journal of Cell Science. 118, 2005, 1099-1102.
[9] Ripa, I., Andreu, S., López-Guerrero, J. A., & Bello-Morales, R. “Membrane rafts: portals for viral entry.” Frontiers in Microbiology. 12, 2021, 631274.
[10] Simons, K., & Ehehalt, R. “Cholesterol, lipid rafts, and disease.” The Journal of Clinical Investigation. 110, 2002, 597-603.
[11] Lingwood, D., & Simons, K. “Lipid rafts as a membrane-organizing principle.” Science. 327, 2011, 46-50.
[12] Simons, K., & Ikonen, E. “Functional rafts in cell membranes.” Nature. 387,1997, 569-572.
[13] Brown, D. A., & London, E. “Structure and origin of ordered lipid domains in biological membranes.” The Journal of Membrane Biology. 164, 1998, 103-114.
[14] Hirst, L. S., Uppamoochikkal, P., & Lor, C. “Phase separation and critical phenomena in biomimetic ternary lipid mixtures.” Liquid Crystals. 38, 2011, 1735-1747.
[15] Heberle, F. A., & Feigenson, G. W. “Phase separation in lipid membranes.” Cold Spring Harbor Perspectives in Biology. 3, 2011, a004630.
[16] Shaw, T. R., Ghosh, S., & Veatch, S. L. “Critical phenomena in plasma membrane organization and function.” Annual Review of Physical Chemistry. 72, 2021, 51-72.
[17] Veatch, S. L. “From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol.” In Seminars in Cell & Developmental Biology. 18, 2007, 573-582.
[18] Veatch, S. L., Soubias, O., Keller, S. L., & Gawrisch, K. “Critical fluctuations in domain-forming lipid mixtures.” Proceedings of the National Academy of Sciences. 104, 2007, 17650-17655.
[19] Pathak, P., & London, E. “The effect of membrane lipid composition on the formation of lipid ultrananodomains.” Biophysical Journal. 109, 2015, 1630-1638.
[20] Heberle, F. A., Wu, J., Goh, S. L., Petruzielo, R. S., & Feigenson, G. W. “Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.” Biophysical Journal. 99, 2010, 3309-3318.
[21] Veatch, S. L. “From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol.” In Seminars in Cell & Developmental Biology. 18, 5, 2007, 573-582. Academic Press.
[22] Holowka, D., & Baird, B. “Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes.” Biochemistry. 22, 1983, 3466-3474.
[23] Veatch, S. L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A., Holowka, D., & Baird, B. “Critical fluctuations in plasma membrane vesicles.” ACS Chemical Biology. 3, 2008, 287-293.
[24] Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., & Webb, W. W. “Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.” Proceedings of the National Academy of Sciences. 104, 2007, 3165-3170.
[25] Sengupta, P., Hammond, A., Holowka, D., & Baird, B. “Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles.” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1778, 2008, 20-32.
[26] Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., & Webb, W. W. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences, 104, 2007, 3165-3170.
[27] Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B., & McLafferty, F. W. “Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry.” Biochemistry. 38, 1999, 8056-8063.
[28] Honerkamp-Smith, A. R., Veatch, S. L., & Keller, S. L. “An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes.” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1788, 2009, 53-63.
[29] Drescher, S., & van Hoogevest, P. “The phospholipid research center: current research in phospholipids and their use in drug delivery.” Pharmaceutics. 12, 2020, 1235.
[30] Kulkarni, C. V. “Lipid crystallization: from self-assembly to hierarchical and biological ordering.” Nanoscale. 4, 2012, 5779-5791.
[31] Jouhet, J. “Importance of the hexagonal lipid phase in biological membrane organization.” Frontiers in Plant Science. 4, 2013,494.
[32] Bilia, A. R., Bergonzi, M. C., Guccione, C., Manconi, M., Fadda, A. M., & Sinico, C. “Vesicles and micelles: Two versatile vectors for the delivery of natural products.” Journal of Drug Delivery Science and Technology. 32, 2016, 241-255.
[33] Bozzuto, G., & Molinari, A. “Liposomes as nanomedical devices.” International Journal of Nanomedicine. 2015, 975-999.
[34] Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., ... & Nejati-Koshki, K. “Liposome: classification, preparation, and applications.” Nanoscale Research Letters. 8, 2013, 1-9.
[35] Mathiyazhakan, M., Wiraja, C., & Xu, C. “A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery.” Nano-Micro Letters. 10, 2018, 1-10.
[36] Torchilin, V. P. “Liposomes as targetable drug carriers.” Critical Reviews in Therapeutic Drug Carrier Systems. 2, 1985, 65-115.
[37] Marsden, H. R., Tomatsu, I., & Kros, A. “Model systems for membrane fusion.” Chemical Society Reviews. 40, 2011,1572-1585.
[38] van Swaay, D., & DeMello, A. “Microfluidic methods for forming liposomes.” Lab on a Chip. 13, 2013, 752-767.
[39] Nikolova, M. P., Kumar, E. M., & Chavali, M. S. “Updates on responsive drug delivery based on liposome vehicles for cancer treatment.” Pharmaceutics. 14, 2022, 2195.
[40] Mondal Roy, S., & Sarkar, M. “Membrane fusion induced by small molecules and ions.” Journal of Lipids. 2011.
[41] Oh, N., & Park, J. H. “Endocytosis and exocytosis of nanoparticles in mammalian cells.” International Journal of Nanomedicine. 9, 2014, 51-63.
[42] Jahn, R., & Fasshauer, D. “Molecular machines governing exocytosis of synaptic vesicles.” Nature. 490, 2012, 201-207.
[43] Stevens, M. J., Hoh, J. H., & Woolf, T. B. “Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails.” Physical Review Letters. 91, 2003, 188102.
[44] Martens, S., & McMahon, H. T. “Mechanisms of membrane fusion: disparate players and common principles.” Nature Reviews Molecular Cell Biology. 9, 2008, 543-556.
[45] Plant Life,Endocytosis and Exocytosis Retrieved on 2024/04/10 from https://lifeofplant.blogspot.com/2011/04/endocytosis-and-exocytosis.html
[46] Jahn, R., Lang, T., & Südhof, T. C. “Membrane fusion.” Cell. 112, 2003, 519-533.
[47] Joardar, A., Pattnaik, G. P., & Chakraborty, H. “Mechanism of membrane fusion: Interplay of lipid and peptide.” The Journal of Membrane Biology. 255, 2022, 211-224.
[48] Fan, Z. A., Tsang, K. Y., Chen, S. H., & Chen, Y. F. “Revisit the correlation between the elastic mechanics and fusion of lipid membranes.” Scientific Reports. 6, 2016, 31470.
[49] Efrat, A., Chernomordik, L. V., & Kozlov, M. M. “Point-like protrusion as a prestalk intermediate in membrane fusion pathway.” Biophysical Journal. 92, 2007, L61-L63.
[50] Rand, R. P., & Parsegian, V. A. “Hydration forces between phospholipid bilayers.” Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 988, 1989, 351-376.
[51] Jahn, R., & Scheller, R. H. “SNAREs—engines for membrane fusion.” Nature Reviews Molecular Cell Biology. 7, 2006, 631-643.
[52] Malinin, V. S., Frederik, P., & Lentz, B. R. “Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids.” Biophysical Journal. 82, 2002, 2090-2100.
[53] Scheidt, H. A., Kolocaj, K., Konrad, D. B., Frank, J. A., Trauner, D., Langosch, D., & Huster, D. “Light-induced lipid mixing implies a causal role of lipid splay in membrane fusion.” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1862, 2020, 183438.
[54] Blumenthal, R., Clague, M. J., Durell, S. R., & Epand, R. M. “Membrane fusion.” Chemical Reviews. 103, 2003, 53-70.
[55] Broussard, J. A., Rappaz, B., Webb, D. J., & Brown, C. M. “Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt.” Nature Protocols. 8, 2013, 265.
[56] Wilschut, J., Duzgunes, N., Fraley, R., & Papahadjopoulos, D. “Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents.” Biochemistry. 19, 1980, 6011-6021.
[57] Selvin, P. R. “The renaissance of fluorescence resonance energy transfer.” Nature Structural Biology. 7, 2000, 730-734.
[58] Babick, Frank. Dynamic light scattering (DLS). Characterization of nanoparticles. Elsevier. 2020. 137-172.
[59] Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S., & Domingues, M. M. “Application of light scattering techniques to nanoparticle characterization and development.” Frontiers in Chemistry. 6, 2018, 237.
[60] Garini, Y., Young, I. T., & McNamara, G. “Spectral imaging: principles and applications.” Cytometry Part a: the Journal of the International Society for Analytical Cytology. 69, 2006, 735-747.
[61] Morandi, M. I., Busko, P., Ozer-Partuk, E., Khan, S., Zarfati, G., Elbaz-Alon, Y., ... & Avinoam, O. “Extracellular vesicle fusion visualized by cryo-electron microscopy.” PNAS Nexus.1, 2022, 156.
[62] Elani, Y., Purushothaman, S., Booth, P. J., Seddon, J. M., Brooks, N. J., Law, R. V., & Ces, O. “Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers.” Chemical Communications. 51, 2015, 6976-6979.
[63] Kogan, M., Feng, B., Nordén, B., Rocha, S., & Beke-Somfai, T. “Shear-induced membrane fusion in viscous solutions.” Langmuir. 30, 2014, 4875-4878.
[64] Bailey, A. L., & Cullis, P. R. “Membrane fusion with cationic liposomes: effects of target membrane lipid composition.” Biochemistry. 36, 1997, 1628-1634.
[65] Li, T., Senesi, A. J., & Lee, B. “Small angle X-ray scattering for nanoparticle research.” Chemical Reviews. 116, 2016, 11128-11180.
[66] Londoño, O. M., Tancredi, P., Rivas, P., Muraca, D., Socolovsky, L. M., & Knobel, M. “Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems.” Handbook of Materials Characterization. 2018, 37-75.
[67] Harroun, T. A., Kučerka, N., Nieh, M. P., & Katsaras, J. “Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems.” Soft Matter. 5, 2009, 2694-2703.
[68] Als-Nielsen, J., & McMorrow, D. “Elements of modern X-ray physics.” John Wiley & Sons. 2011.
[69] Pabst, G., Koschuch, R., Pozo-Navas, B., Rappolt, M., Lohner, K., & Laggner, P. (2003). “Structural analysis of weakly ordered membrane stacks.” Journal of Applied Crystallography. 36, 2003,1378-1388.
[70] Pabst, G., Rappolt, M., Amenitsch, H., & Laggner, P. “Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data.” Physical Review E. 62, 2000, 4000.
[71] Scott, H. L., Skinkle, A., Kelley, E. G., Waxham, M. N., Levental, I., & Heberle, F. A. “On the mechanism of bilayer separation by extrusion, or why your LUVs are not really unilamellar.” Biophysical Journal. 117, 2019, 1381-1386.
[72] Brzustowicz, M. R., & Brunger, A. T. “X-ray scattering from unilamellar lipid vesicles.” Journal of Applied Crystallography. 38, 2005, 126-131.
[73] Kucerka, N., Pencer, J., Sachs, J. N., Nagle, J. F., & Katsaras, J. “Curvature effect on the structure of phospholipid bilayers.” Langmuir. 23, 2007, 1292-1299.
[74] Loura, L. M., Fedorov, A., & Prieto, M. “Membrane probe distribution heterogeneity: a resonance energy transfer study.” The Journal of Physical Chemistry B. 104, 2000, 6920-6931.
[75] London, E., & Brown, D. A. “Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1508, 2000, 182-195.
[76] Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D., & Evans, E. “Effect of chain length and unsaturation on elasticity of lipid bilayers.” Biophysical Journal. 79, 2000, 328-339.
[77] Vu, T. Q., Peruzzi, J. A., Sant’Anna, L. E., Roth, E. W., & Kamat, N. P. “Lipid phase separation in vesicles enhances TRAIL-mediated cytotoxicity.” Nano Letters. 22, 2022, 2627-2634.
[78] Olsen, B. N., Bielska, A. A., Lee, T., Daily, M. D., Covey, D. F., Schlesinger, P. H., ... & Ory, D. S. “The structural basis of cholesterol accessibility in membranes.” Biophysical Journal. 105, 2013, 1838-1847.
[79] Leikin, S. L., Kozlov, M. M., Chernomordik, L. V., Markin, V. S., & Chizmadzhev, Y. A. “Membrane fusion: overcoming of the hydration barrier and local restructuring.” Journal of Theoretical Biology. 129, 1987, 411-425.
[80] Weinreb, G., & Lentz, B. R. “Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.” Biophysical Journal. 92, 2007, 4012-4029.
[81] Chen, Z., & Rand, R. P. “The influence of cholesterol on phospholipid membrane curvature and bending elasticity.” Biophysical Journal. 73, 1997, 267-276.
[82] Yang, S. T., Kiessling, V., & Tamm, L. K. “Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion.” Nature Communications. 7, 2016, 11401.
[83] Yang, S. T., Kiessling, V., Simmons, J. A., White, J. M., & Tamm, L. K. “HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains.” Nature Chemical Biology. 11, 2015, 424.
[84] Honerkamp-Smith, A. R., Cicuta, P., Collins, M. D., Veatch, S. L., Den Nijs, M., Schick, M., & Keller, S. L. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophysical Journal, 95, 2008, 236-246.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明