參考文獻 |
[1] Ko, T. H., & Chen, Y. F. “Correlation between the In-Plane Critical Behavior and Out-of-Plane Interaction of Ternary Lipid Membranes.” Membranes. 13, 2022, 6.
[2] Keren, K. “Cell motility: the integrating role of the plasma membrane.” European Biophysics Journal. 40, 2011, 1013-1027.
[3] Laude, A. J., & Prior, I. A. “Plasma membrane microdomains: organization, function and trafficking.” Molecular Membrane Biology. 21, 2004, 193-205.
[4] Lombard, J. “Once upon a time the cell membranes: 175 years of cell boundary research.” Biology Direct. 9, 2014, 1-35.
[5] Simons, K., & Vaz, W. L. “Model systems, lipid rafts, and cell membranes.” Annual Review of Biophysics and Biomolecular Structure. 33, 2004, 269-295.
[6] Tong, Y. C. “The role of cholesterol in prostatic diseases.” Urological Science, 22, 2011, 97-102.
[7] Dharani, K. The biology of thought: A neuronal mechanism in the generation of thought-A new molecular model. Academic Press. 2014.
[8] Rajendran, L., & Simons, K. “Lipid rafts and membrane dynamics.” Journal of Cell Science. 118, 2005, 1099-1102.
[9] Ripa, I., Andreu, S., López-Guerrero, J. A., & Bello-Morales, R. “Membrane rafts: portals for viral entry.” Frontiers in Microbiology. 12, 2021, 631274.
[10] Simons, K., & Ehehalt, R. “Cholesterol, lipid rafts, and disease.” The Journal of Clinical Investigation. 110, 2002, 597-603.
[11] Lingwood, D., & Simons, K. “Lipid rafts as a membrane-organizing principle.” Science. 327, 2011, 46-50.
[12] Simons, K., & Ikonen, E. “Functional rafts in cell membranes.” Nature. 387,1997, 569-572.
[13] Brown, D. A., & London, E. “Structure and origin of ordered lipid domains in biological membranes.” The Journal of Membrane Biology. 164, 1998, 103-114.
[14] Hirst, L. S., Uppamoochikkal, P., & Lor, C. “Phase separation and critical phenomena in biomimetic ternary lipid mixtures.” Liquid Crystals. 38, 2011, 1735-1747.
[15] Heberle, F. A., & Feigenson, G. W. “Phase separation in lipid membranes.” Cold Spring Harbor Perspectives in Biology. 3, 2011, a004630.
[16] Shaw, T. R., Ghosh, S., & Veatch, S. L. “Critical phenomena in plasma membrane organization and function.” Annual Review of Physical Chemistry. 72, 2021, 51-72.
[17] Veatch, S. L. “From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol.” In Seminars in Cell & Developmental Biology. 18, 2007, 573-582.
[18] Veatch, S. L., Soubias, O., Keller, S. L., & Gawrisch, K. “Critical fluctuations in domain-forming lipid mixtures.” Proceedings of the National Academy of Sciences. 104, 2007, 17650-17655.
[19] Pathak, P., & London, E. “The effect of membrane lipid composition on the formation of lipid ultrananodomains.” Biophysical Journal. 109, 2015, 1630-1638.
[20] Heberle, F. A., Wu, J., Goh, S. L., Petruzielo, R. S., & Feigenson, G. W. “Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.” Biophysical Journal. 99, 2010, 3309-3318.
[21] Veatch, S. L. “From small fluctuations to large-scale phase separation: lateral organization in model membranes containing cholesterol.” In Seminars in Cell & Developmental Biology. 18, 5, 2007, 573-582. Academic Press.
[22] Holowka, D., & Baird, B. “Structural studies on the membrane-bound immunoglobulin E-receptor complex. 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes.” Biochemistry. 22, 1983, 3466-3474.
[23] Veatch, S. L., Cicuta, P., Sengupta, P., Honerkamp-Smith, A., Holowka, D., & Baird, B. “Critical fluctuations in plasma membrane vesicles.” ACS Chemical Biology. 3, 2008, 287-293.
[24] Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., & Webb, W. W. “Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.” Proceedings of the National Academy of Sciences. 104, 2007, 3165-3170.
[25] Sengupta, P., Hammond, A., Holowka, D., & Baird, B. “Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles.” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1778, 2008, 20-32.
[26] Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., & Webb, W. W. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences, 104, 2007, 3165-3170.
[27] Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B., & McLafferty, F. W. “Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry.” Biochemistry. 38, 1999, 8056-8063.
[28] Honerkamp-Smith, A. R., Veatch, S. L., & Keller, S. L. “An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes.” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1788, 2009, 53-63.
[29] Drescher, S., & van Hoogevest, P. “The phospholipid research center: current research in phospholipids and their use in drug delivery.” Pharmaceutics. 12, 2020, 1235.
[30] Kulkarni, C. V. “Lipid crystallization: from self-assembly to hierarchical and biological ordering.” Nanoscale. 4, 2012, 5779-5791.
[31] Jouhet, J. “Importance of the hexagonal lipid phase in biological membrane organization.” Frontiers in Plant Science. 4, 2013,494.
[32] Bilia, A. R., Bergonzi, M. C., Guccione, C., Manconi, M., Fadda, A. M., & Sinico, C. “Vesicles and micelles: Two versatile vectors for the delivery of natural products.” Journal of Drug Delivery Science and Technology. 32, 2016, 241-255.
[33] Bozzuto, G., & Molinari, A. “Liposomes as nanomedical devices.” International Journal of Nanomedicine. 2015, 975-999.
[34] Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., ... & Nejati-Koshki, K. “Liposome: classification, preparation, and applications.” Nanoscale Research Letters. 8, 2013, 1-9.
[35] Mathiyazhakan, M., Wiraja, C., & Xu, C. “A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery.” Nano-Micro Letters. 10, 2018, 1-10.
[36] Torchilin, V. P. “Liposomes as targetable drug carriers.” Critical Reviews in Therapeutic Drug Carrier Systems. 2, 1985, 65-115.
[37] Marsden, H. R., Tomatsu, I., & Kros, A. “Model systems for membrane fusion.” Chemical Society Reviews. 40, 2011,1572-1585.
[38] van Swaay, D., & DeMello, A. “Microfluidic methods for forming liposomes.” Lab on a Chip. 13, 2013, 752-767.
[39] Nikolova, M. P., Kumar, E. M., & Chavali, M. S. “Updates on responsive drug delivery based on liposome vehicles for cancer treatment.” Pharmaceutics. 14, 2022, 2195.
[40] Mondal Roy, S., & Sarkar, M. “Membrane fusion induced by small molecules and ions.” Journal of Lipids. 2011.
[41] Oh, N., & Park, J. H. “Endocytosis and exocytosis of nanoparticles in mammalian cells.” International Journal of Nanomedicine. 9, 2014, 51-63.
[42] Jahn, R., & Fasshauer, D. “Molecular machines governing exocytosis of synaptic vesicles.” Nature. 490, 2012, 201-207.
[43] Stevens, M. J., Hoh, J. H., & Woolf, T. B. “Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails.” Physical Review Letters. 91, 2003, 188102.
[44] Martens, S., & McMahon, H. T. “Mechanisms of membrane fusion: disparate players and common principles.” Nature Reviews Molecular Cell Biology. 9, 2008, 543-556.
[45] Plant Life,Endocytosis and Exocytosis Retrieved on 2024/04/10 from https://lifeofplant.blogspot.com/2011/04/endocytosis-and-exocytosis.html
[46] Jahn, R., Lang, T., & Südhof, T. C. “Membrane fusion.” Cell. 112, 2003, 519-533.
[47] Joardar, A., Pattnaik, G. P., & Chakraborty, H. “Mechanism of membrane fusion: Interplay of lipid and peptide.” The Journal of Membrane Biology. 255, 2022, 211-224.
[48] Fan, Z. A., Tsang, K. Y., Chen, S. H., & Chen, Y. F. “Revisit the correlation between the elastic mechanics and fusion of lipid membranes.” Scientific Reports. 6, 2016, 31470.
[49] Efrat, A., Chernomordik, L. V., & Kozlov, M. M. “Point-like protrusion as a prestalk intermediate in membrane fusion pathway.” Biophysical Journal. 92, 2007, L61-L63.
[50] Rand, R. P., & Parsegian, V. A. “Hydration forces between phospholipid bilayers.” Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 988, 1989, 351-376.
[51] Jahn, R., & Scheller, R. H. “SNAREs—engines for membrane fusion.” Nature Reviews Molecular Cell Biology. 7, 2006, 631-643.
[52] Malinin, V. S., Frederik, P., & Lentz, B. R. “Osmotic and curvature stress affect PEG-induced fusion of lipid vesicles but not mixing of their lipids.” Biophysical Journal. 82, 2002, 2090-2100.
[53] Scheidt, H. A., Kolocaj, K., Konrad, D. B., Frank, J. A., Trauner, D., Langosch, D., & Huster, D. “Light-induced lipid mixing implies a causal role of lipid splay in membrane fusion.” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1862, 2020, 183438.
[54] Blumenthal, R., Clague, M. J., Durell, S. R., & Epand, R. M. “Membrane fusion.” Chemical Reviews. 103, 2003, 53-70.
[55] Broussard, J. A., Rappaz, B., Webb, D. J., & Brown, C. M. “Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt.” Nature Protocols. 8, 2013, 265.
[56] Wilschut, J., Duzgunes, N., Fraley, R., & Papahadjopoulos, D. “Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents.” Biochemistry. 19, 1980, 6011-6021.
[57] Selvin, P. R. “The renaissance of fluorescence resonance energy transfer.” Nature Structural Biology. 7, 2000, 730-734.
[58] Babick, Frank. Dynamic light scattering (DLS). Characterization of nanoparticles. Elsevier. 2020. 137-172.
[59] Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S., & Domingues, M. M. “Application of light scattering techniques to nanoparticle characterization and development.” Frontiers in Chemistry. 6, 2018, 237.
[60] Garini, Y., Young, I. T., & McNamara, G. “Spectral imaging: principles and applications.” Cytometry Part a: the Journal of the International Society for Analytical Cytology. 69, 2006, 735-747.
[61] Morandi, M. I., Busko, P., Ozer-Partuk, E., Khan, S., Zarfati, G., Elbaz-Alon, Y., ... & Avinoam, O. “Extracellular vesicle fusion visualized by cryo-electron microscopy.” PNAS Nexus.1, 2022, 156.
[62] Elani, Y., Purushothaman, S., Booth, P. J., Seddon, J. M., Brooks, N. J., Law, R. V., & Ces, O. “Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers.” Chemical Communications. 51, 2015, 6976-6979.
[63] Kogan, M., Feng, B., Nordén, B., Rocha, S., & Beke-Somfai, T. “Shear-induced membrane fusion in viscous solutions.” Langmuir. 30, 2014, 4875-4878.
[64] Bailey, A. L., & Cullis, P. R. “Membrane fusion with cationic liposomes: effects of target membrane lipid composition.” Biochemistry. 36, 1997, 1628-1634.
[65] Li, T., Senesi, A. J., & Lee, B. “Small angle X-ray scattering for nanoparticle research.” Chemical Reviews. 116, 2016, 11128-11180.
[66] Londoño, O. M., Tancredi, P., Rivas, P., Muraca, D., Socolovsky, L. M., & Knobel, M. “Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems.” Handbook of Materials Characterization. 2018, 37-75.
[67] Harroun, T. A., Kučerka, N., Nieh, M. P., & Katsaras, J. “Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems.” Soft Matter. 5, 2009, 2694-2703.
[68] Als-Nielsen, J., & McMorrow, D. “Elements of modern X-ray physics.” John Wiley & Sons. 2011.
[69] Pabst, G., Koschuch, R., Pozo-Navas, B., Rappolt, M., Lohner, K., & Laggner, P. (2003). “Structural analysis of weakly ordered membrane stacks.” Journal of Applied Crystallography. 36, 2003,1378-1388.
[70] Pabst, G., Rappolt, M., Amenitsch, H., & Laggner, P. “Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data.” Physical Review E. 62, 2000, 4000.
[71] Scott, H. L., Skinkle, A., Kelley, E. G., Waxham, M. N., Levental, I., & Heberle, F. A. “On the mechanism of bilayer separation by extrusion, or why your LUVs are not really unilamellar.” Biophysical Journal. 117, 2019, 1381-1386.
[72] Brzustowicz, M. R., & Brunger, A. T. “X-ray scattering from unilamellar lipid vesicles.” Journal of Applied Crystallography. 38, 2005, 126-131.
[73] Kucerka, N., Pencer, J., Sachs, J. N., Nagle, J. F., & Katsaras, J. “Curvature effect on the structure of phospholipid bilayers.” Langmuir. 23, 2007, 1292-1299.
[74] Loura, L. M., Fedorov, A., & Prieto, M. “Membrane probe distribution heterogeneity: a resonance energy transfer study.” The Journal of Physical Chemistry B. 104, 2000, 6920-6931.
[75] London, E., & Brown, D. A. “Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).” Biochimica et Biophysica Acta (BBA)-Biomembranes. 1508, 2000, 182-195.
[76] Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D., & Evans, E. “Effect of chain length and unsaturation on elasticity of lipid bilayers.” Biophysical Journal. 79, 2000, 328-339.
[77] Vu, T. Q., Peruzzi, J. A., Sant’Anna, L. E., Roth, E. W., & Kamat, N. P. “Lipid phase separation in vesicles enhances TRAIL-mediated cytotoxicity.” Nano Letters. 22, 2022, 2627-2634.
[78] Olsen, B. N., Bielska, A. A., Lee, T., Daily, M. D., Covey, D. F., Schlesinger, P. H., ... & Ory, D. S. “The structural basis of cholesterol accessibility in membranes.” Biophysical Journal. 105, 2013, 1838-1847.
[79] Leikin, S. L., Kozlov, M. M., Chernomordik, L. V., Markin, V. S., & Chizmadzhev, Y. A. “Membrane fusion: overcoming of the hydration barrier and local restructuring.” Journal of Theoretical Biology. 129, 1987, 411-425.
[80] Weinreb, G., & Lentz, B. R. “Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.” Biophysical Journal. 92, 2007, 4012-4029.
[81] Chen, Z., & Rand, R. P. “The influence of cholesterol on phospholipid membrane curvature and bending elasticity.” Biophysical Journal. 73, 1997, 267-276.
[82] Yang, S. T., Kiessling, V., & Tamm, L. K. “Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion.” Nature Communications. 7, 2016, 11401.
[83] Yang, S. T., Kiessling, V., Simmons, J. A., White, J. M., & Tamm, L. K. “HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains.” Nature Chemical Biology. 11, 2015, 424.
[84] Honerkamp-Smith, A. R., Cicuta, P., Collins, M. D., Veatch, S. L., Den Nijs, M., Schick, M., & Keller, S. L. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophysical Journal, 95, 2008, 236-246.
|