博碩士論文 112821013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.129.71.217
姓名 廖昱雅(Yu-Ya Liao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討壓力對觀察恐懼學習的影響: 雄性小鼠杏仁核腦區分子機制探討
(Investigate the Impact of Stress and Observational Fear Learning: Mechanisms in the Amygdala of male mice)
相關論文
★ 探討暴露聚苯乙烯塑膠微粒對小鼠大腦學習與記憶之分子機制與神經發炎的影響★ 探討剔除Dtnbp1基因對於公和母鼠前額葉多巴胺傳遞路徑與社交行為的影響
★ 探討早期壓力及成年慢性不可預測壓力對恐懼社交轉移的影響★ 探討食入及吸入聚苯乙烯塑膠微粒對小鼠行為的影響
★ 探討壓力對於雌性小鼠觀察恐懼學習的影響★ Development of Seasonal Influenza Virus-like Particle (VLP) Vaccines Using Insect Cell-based Baculovirus Expressing System
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 壓力是誘導精神障礙的潛在因子,研究證實壓力會影響大腦神經機制與行為表現。觀察恐懼學習是指透過觀察他人的情緒表達而學習恐懼的過程,可以促進個體適應厭惡性刺激,在精神障礙患者中觀察恐懼學習缺失為常見的症狀之一。本實驗室先前的研究指出雙重壓力會降低雄性小鼠觀察恐懼學習並降低杏仁核神經活性,然而壓力與觀察恐懼學習之間的分子機制並不清楚,因此本論文將利用雄性壓力小鼠模型進一步探討壓力與觀察恐懼學習之間的分子機制。首先將各組壓力與對照組小鼠杏仁核組織進行RNA定序,定序結果指出雙重壓力與觀察恐懼學習影響下降低大部分差異表現基因的表達,分析後有81個基因僅顯著差異表達於雙重壓力雄性小鼠,81個基因經過生物過程基因體分析後指出雙重壓力與觀察恐懼學習主要影響髓鞘以及膠細胞相關途徑,例如Cntn2和Sgpp2。接著我們利用聚合酶鏈鎖反應檢測各組壓力與對照組小鼠杏仁核髓鞘和膠細胞相關基因表達量,發現壓力與觀察恐懼學習確實降低Cntn2 以及Mbp在杏仁核的表達。為了驗證雙重壓力與觀察恐懼學習是否共同影響杏仁核中髓鞘和膠細胞相關基因表現,我們同樣利用聚合酶鏈鎖反應檢測 Naïve-Ctrl、Naïve-DS、OFL-Ctrl以及OFL-DS小鼠杏仁核Cntn2和Sgpp2表達,本論文發現Sgpp2的表達會受到雙重壓力和觀察恐懼學習的影響而下降。由於文獻表明血清素、催產素和多巴胺系統與精神
障礙有高度相關,同時我們也在RNA定序中發現這些基因可能參與調控雙重壓力與觀察恐懼學習,因此我們利用相同實驗方式對相關基因進行探討。本論文表明雙重壓力與觀察恐懼學習會降低杏仁核CD38以及增加Oxt與SLC6A4表達,另外也證明這些基因表達變化確實是受到雙重壓力與觀察恐懼學習共同的影響。綜合上述結果表明杏仁核髓鞘形成、血清素和催產素系統參與調控雄性小鼠雙重壓力與觀察恐懼學習的行為,也為精神障礙中觀察恐懼學習缺失的機制提供進一步見解。
摘要(英) Stress is known to increase the risk of mental illness. Previous studies have shown that stress affects both neuronal mechanisms in the brain and behavior. Observational fear, the process of learning fear through others, helps individuals adapt to negative stimuli, and its impairment is a common symptom in patients with mental illness. In our preliminary data, we found that male DS-Ob mice exhibited reduced freezing time during observational fear learning
test and decreased neural activity in the amygdala. However, the underlying mechanisms linking stress and observational fear learning remain unclear. In this study, we used a male
stressed-mice model to investigate this mechanism. We first performed RNA sequencing on the amygdala of each stressed mouse and found that 81 differentially expression genes were
downregulated in male DS-Ob mice. Gene Ontology (GO) analysis indicated that these genes are involved in myelin sheath formation and glial cell function, including genes such as Cntn2 and Sgpp2. Furthermore, we examined the mRNA expression of myelin-related genes in the amygdala of stressed male mice using qPCR, which revealed decreased expression of these genes in male DS-Ob mice. Given that serotonin, oxytocin and dopamine systems are frequently
implicated in mental illness, we also identified these systems in our RNA sequencing data as being related to doubled-stress and observational fear learning.Specifically, we found that the expression of CD38 decreased, while Oxt and SLC6A4 increased in male DS-Ob mice, as confirmed by qPCR. To determine whether these genes are involved in both doubled-stress and observational fear learning, we compared mRNA expression levels between Naïve and OFL groups, with or without doubled-stress. Our results showed that Sgpp2 and CD38 decreased, while Oxt and SLC6A4 increased after doubled-stress and observational fear learning in the amygdala of male mice. In summary, this thesis demonstrates that myelination, serotonin, and oxytocin systems in the amygdala play a role in regulating doubled-stress and observational fear learning in male mice. These findings offer new insights into the mechanisms underlying observational fear learning impairment in stress-induced mental illness disorders.
關鍵字(中) ★ 雙重壓力
★ 觀察恐懼學習
★ 髓鞘形成
★ 血清素系統
★ 催產素系統
關鍵字(英) ★ doubled-stress
★ observational fear learning
★ myelination
★ serotonin system
★ oxytocin system
論文目次 目錄
中文摘要 I
英文摘要Abstract II
致謝 IV
圖目錄 VIII
表目錄 IX
中英文對照表 X
一、緒論 1
1-1壓力 1
1-2早期壓力 3
1-3慢性不可預測壓力 5
1-4壓力與血清素系統關聯 7
1-5壓力與催產素系統關聯 10
1-6壓力與多巴胺系統關聯 12
1-7觀察恐懼學習 14
1-8研究動機與目的 16
二、研究方法 17
2-1實驗動物 17
2-2建立小鼠壓力模型 17
2-2-1早期壓力小鼠模型 17
2-2-2慢性不可預測壓力小鼠模型 18
2-2-3雙重壓力小鼠模型 20
2-2-4對照組小鼠模型 20
2-3觀察恐懼學習實驗 21
2-4實驗小鼠犧牲與收組織 22
2-5 RNA萃取 23
2-6 RNA定序 23
2-7即時聚合酶鏈鎖反應 24
2-8統計分析 24
三、研究結果 25
3-1壓力與觀察恐懼學習影響雄性小鼠大腦神經活性 25
3-2壓力與觀察恐懼學習改變雄性小鼠杏仁核基因表達 25
3-3雄性小鼠杏仁核壓力與觀察恐懼學習的基因體分析 26
3-4探討壓力與觀察恐懼學習對杏仁核髓鞘相關基因表達 27
3-5探討雙重壓力與觀察恐懼學習對杏仁核髓鞘相關基因表達 27
3-6探討雙重壓力與觀察恐懼學習對杏仁核催產素相關基因表達 28
3-7探討雙重壓力與觀察恐懼學習對杏仁核血清素相關基因表達 28
3-8探討雙重壓力與觀察恐懼學習對杏仁核多巴胺相關基因表達 29
四、討論 30
五、結論 33
參考文獻 45
附錄 64
附件1、ELS雄性小鼠差異表現基因列表 64
附件2、CUS雄性小鼠差異表現基因列表 65
附件3、DS雄性小鼠差異表現基因列表 66
附件4、ELS與CUS雄性小鼠共同差異表現基因列表 67
附件5、ELS與DS雄性小鼠共同差異表現基因列表 68
附件6、CUS與DS雄性小鼠共同差異表現基因列表 69
附件7、ELS、CUS與DS雄性小鼠共同差異表現基因列表 70
附件8、ELS雄性小鼠特異性差異表現基因列表 71
附件9、CUS雄性小鼠特異性差異表現基因列表 72
附件10、DS雄性小鼠特異性差異表現基因列表 73
附件11、即時聚合酶鏈鎖反應引子序列 74
附件12、Supplementary figure 76
參考文獻 1. Selye, H., The general adaptation syndrome and the diseases of adaptation. The journal of clinical endocrinology, 1946. 6(2): p. 117-230.
2. Koolhaas, J.M., et al., Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev, 2011. 35(5): p. 1291-301.
3. De Kloet, E.R., et al., Brain corticosteroid receptor balance in health and disease. Endocr Rev, 1998. 19(3): p. 269-301.
4. Carrasco, G.A. and L.D. Van de Kar, Neuroendocrine pharmacology of stress. Eur J Pharmacol, 2003. 463(1-3): p. 235-72.
5. Dragoş, D. and M.D. Tănăsescu, The effect of stress on the defense systems. J Med Life, 2010. 3(1): p. 10-8.
6. McEwen, B.S., Stressed or stressed out: what is the difference? J Psychiatry Neurosci, 2005. 30(5): p. 315-8.
7. Paykel, E.S., Life stress, depression and attempted suicide. J Human Stress, 1976. 2(3): p. 3-12.
8. Yaribeygi, H., et al., The impact of stress on body function: A review. Excli j, 2017. 16: p. 1057-1072.
9. Marin, M.F., et al., Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem, 2011. 96(4): p. 583-95.
10. Davis, M.T., et al., Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. Chronic Stress (Thousand Oaks), 2017. 1.
11. Juruena, M.F., et al., The Role of Early Life Stress in HPA Axis and Anxiety. Adv Exp Med Biol, 2020. 1191: p. 141-153.
12. Hammen, C., Stress and depression. Annu Rev Clin Psychol, 2005. 1: p. 293-319.
1. Selye, H., The general adaptation syndrome and the diseases of adaptation. The journal of clinical endocrinology, 1946. 6(2): p. 117-230.
2. Koolhaas, J.M., et al., Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev, 2011. 35(5): p. 1291-301.
3. De Kloet, E.R., et al., Brain corticosteroid receptor balance in health and disease. Endocr Rev, 1998. 19(3): p. 269-301.
4. Carrasco, G.A. and L.D. Van de Kar, Neuroendocrine pharmacology of stress. Eur J Pharmacol, 2003. 463(1-3): p. 235-72.
5. Dragoş, D. and M.D. Tănăsescu, The effect of stress on the defense systems. J Med Life, 2010. 3(1): p. 10-8.
6. McEwen, B.S., Stressed or stressed out: what is the difference? J Psychiatry Neurosci, 2005. 30(5): p. 315-8.
7. Paykel, E.S., Life stress, depression and attempted suicide. J Human Stress, 1976. 2(3): p. 3-12.
8. Yaribeygi, H., et al., The impact of stress on body function: A review. Excli j, 2017. 16: p. 1057-1072.
9. Marin, M.F., et al., Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem, 2011. 96(4): p. 583-95.
10. Davis, M.T., et al., Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. Chronic Stress (Thousand Oaks), 2017. 1.
11. Juruena, M.F., et al., The Role of Early Life Stress in HPA Axis and Anxiety. Adv Exp Med Biol, 2020. 1191: p. 141-153.
12. Hammen, C., Stress and depression. Annu Rev Clin Psychol, 2005. 1: p. 293-319.
13. Foster, J.A., L. Rinaman, and J.F. Cryan, Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol Stress, 2017. 7: p. 124-136.
14. Bourvis, N., et al., How Do Stress Exposure and Stress Regulation Relate to Borderline Personality Disorder? Front Psychol, 2017. 8: p. 2054.
15. Jaggi, A.S., et al., A review on animal models for screening potential anti-stress agents. Neurol Sci, 2011. 32(6): p. 993-1005.
16. Atrooz, F., K.A. Alkadhi, and S. Salim, Understanding stress: Insights from rodent models. Curr Res Neurobiol, 2021. 2: p. 100013.
17. Adamec, R., et al., Neural plasticity, neuropeptides and anxiety in animals--implications for understanding and treating affective disorder following traumatic stress in humans. Neurosci Biobehav Rev, 1998. 23(2): p. 301-18.
18. Blanchard, R.J., C.R. McKittrick, and D.C. Blanchard, Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol Behav, 2001. 73(3): p. 261-71.
19. Kim, J.J. and D.M. Diamond, The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci, 2002. 3(6): p. 453-62.
20. <animal model of stress.pdf>.
21. Bhatia, N., et al., Animal models of stress. International Journal of Pharmaceutical Sciences and Research, 2011. 2(5): p. 1147.
22. Hannibal, D.L., et al., Laboratory rhesus macaque social housing and social changes: Implications for research. Am J Primatol, 2017. 79(1): p. 1-14.
23. Nandam, L.S., et al., Cortisol and Major Depressive Disorder-Translating Findings From Humans to Animal Models and Back. Front Psychiatry, 2019. 10: p. 974.
24. Silbereis, J.C., et al., The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron, 2016. 89(2): p. 248-68.
25. Bystron, I., C. Blakemore, and P. Rakic, Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci, 2008. 9(2): p. 110-22.
26. Kohman, R.A. and J.S. Rhodes, Neurogenesis, inflammation and behavior. Brain Behav Immun, 2013. 27(1): p. 22-32.
27. Kolb, B., et al., Experience and the developing prefrontal cortex. Proc Natl Acad Sci U S A, 2012. 109 Suppl 2(Suppl 2): p. 17186-93.
28. Brans, R.G., et al., Brain plasticity and intellectual ability are influenced by shared genes. J Neurosci, 2010. 30(16): p. 5519-24.
29. Brown, D.W., et al., Adverse childhood experiences and the risk of premature mortality. Am J Prev Med, 2009. 37(5): p. 389-96.
30. Loi, M., et al., Age- and sex-dependent effects of early life stress on hippocampal neurogenesis. Front Endocrinol (Lausanne), 2014. 5: p. 13.
31. Cattaneo, A. and M.A. Riva, Stress-induced mechanisms in mental illness: A role for glucocorticoid signalling. J Steroid Biochem Mol Biol, 2016. 160: p. 169-74.
32. Heim, C. and C.B. Nemeroff, The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry, 1999. 46(11): p. 1509-22.
33. Nobre, J., et al., Psychological Vulnerability Indices and the Adolescent′s Good Mental Health Factors: A Correlational Study in a Sample of Portuguese Adolescents. Children (Basel), 2022. 9(12).
34. Jiang, Z., R.M. Cowell, and K. Nakazawa, Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia. Front Behav Neurosci, 2013. 7: p. 116.
35. Korosi, A., et al., Early-life stress mediated modulation of adult neurogenesis and behavior. Behav Brain Res, 2012. 227(2): p. 400-9.
36. Schmahl, C.G., et al., Magnetic resonance imaging of hippocampal and amygdala volume in women with childhood abuse and borderline personality disorder. Psychiatry Res, 2003. 122(3): p. 193-8.
37. Raabe, F.J. and D. Spengler, Epigenetic Risk Factors in PTSD and Depression. Front Psychiatry, 2013. 4: p. 80.
38. Tarullo, A.R. and M.R. Gunnar, Child maltreatment and the developing HPA axis. Horm Behav, 2006. 50(4): p. 632-9.
39. Teicher, M.H., et al., The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci, 2016. 17(10): p. 652-66.
40. Antontseva, E., et al., The Effects of Chronic Stress on Brain Myelination in Humans and in Various Rodent Models. Neuroscience, 2020. 441: p. 226-238.
41. Rice, D. and S. Barone, Jr., Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect, 2000. 108 Suppl 3(Suppl 3): p. 511-33.
42. Rosenfeld, P., et al., Maternal regulation of the adrenocortical response in preweanling rats. Physiol Behav, 1991. 50(4): p. 661-71.
43. Levine, S., Primary social relationships influence the development of the hypothalamic--pituitary--adrenal axis in the rat. Physiol Behav, 2001. 73(3): p. 255-60.
44. Schmidt, M.V., et al., Glucocorticoid receptor blockade disinhibits pituitary-adrenal activity during the stress hyporesponsive period of the mouse. Endocrinology, 2005. 146(3): p. 1458-64.
45. Haller, J., et al., Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol, 2014. 26(10): p. 724-38.
46. Savignac, H.M., T.G. Dinan, and J.F. Cryan, Resistance to early-life stress in mice: effects of genetic background and stress duration. Front Behav Neurosci, 2011. 5: p. 13.
47. Tractenberg, S.G., et al., An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neurosci Biobehav Rev, 2016. 68: p. 489-503.
48. Romeo, R.D., et al., Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Horm Behav, 2003. 43(5): p. 561-7.
49. Parfitt, D.B., et al., Differential early rearing environments can accentuate or attenuate the responses to stress in male C57BL/6 mice. Brain Res, 2004. 1016(1): p. 111-8.
50. MacQueen, G.M., et al., Desipramine treatment reduces the long-term behavioural and neurochemical sequelae of early-life maternal separation. Int J Neuropsychopharmacol, 2003. 6(4): p. 391-6.
51. Venerosi, A., et al., Prolonged perinatal AZT administration and early maternal separation: effects on social and emotional behaviour of periadolescent mice. Pharmacol Biochem Behav, 2003. 74(3): p. 671-81.
52. Millstein, R., et al., Effects of repeated maternal separation on prepulse inhibition of startle across inbred mouse strains. Genes, Brain and Behavior, 2006. 5(4): p. 346-354.
53. McCormick, C.M., P. Kehoe, and S. Kovacs, Corticosterone release in response to repeated, short episodes of neonatal isolation: evidence of sensitization. Int J Dev Neurosci, 1998. 16(3-4): p. 175-85.
54. Nishi, M., N. Horii-Hayashi, and T. Sasagawa, Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front Neurosci, 2014. 8: p. 166.
55. Horii-Hayashi, N., et al., Developmental changes in desensitisation of c-Fos expression induced by repeated maternal separation in pre-weaned mice. J Neuroendocrinol, 2013. 25(2): p. 158-67.
56. Davis, M., et al., Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 2010. 35(1): p. 105-35.
57. Greenberg, A. and J. Berktold, Stress and mind/body health. Greenberg Quinlan Rosner, 2006: p. 1-23.
58. Stambor, Z., Stressed out nation. 2006.
59. Kessler, R.C., C.G. Davis, and K.S. Kendler, Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychological medicine, 1997. 27(5): p. 1101-1119.
60. Lee, J.S., J.Y. Kang, and C.G. Son, A Comparison of Isolation Stress and Unpredictable Chronic Mild Stress for the Establishment of Mouse Models of Depressive Disorder. Front Behav Neurosci, 2020. 14: p. 616389.
61. Bittar, T.P., et al., Chronic Stress Induces Sex-Specific Functional and Morphological Alterations in Corticoaccumbal and Corticotegmental Pathways. Biol Psychiatry, 2021. 90(3): p. 194-205.
62. Monteiro, S., et al., An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front Psychiatry, 2015. 6: p. 6.
63. Yohn, N.L. and J.A. Blendy, Adolescent Chronic Unpredictable Stress Exposure Is a Sensitive Window for Long-Term Changes in Adult Behavior in Mice. Neuropsychopharmacology, 2017. 42(8): p. 1670-1678.
64. Lu, Q., et al., Chronic unpredictable mild stress-induced behavioral changes are coupled with dopaminergic hyperfunction and serotonergic hypofunction in mouse models of depression. Behav Brain Res, 2019. 372: p. 112053.
65. Magariños, A.M., J.M. Verdugo, and B.S. McEwen, Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A, 1997. 94(25): p. 14002-8.
66. Ubaldi, M., et al., Biomarkers of hippocampal gene expression in a mouse restraint chronic stress model. Pharmacogenomics, 2015. 16(5): p. 471-82.
67. Ito, H., et al., Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology, 2010. 58(4-5): p. 746-57.
68. Gilabert-Juan, J., et al., Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp Neurol, 2011. 232(1): p. 33-40.
69. Liu, W.Z., et al., Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun, 2020. 11(1): p. 2221.
70. Cathomas, F., et al., Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice. Genes Brain Behav, 2019. 18(1): p. e12475.
71. Juruena, M.F., Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav, 2014. 38: p. 148-59.
72. Deng, S., et al., Early-life stress contributes to depression-like behaviors in a two-hit mouse model. Behav Brain Res, 2023. 452: p. 114563.
73. Peña, C.J., et al., Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science, 2017. 356(6343): p. 1185-1188.
74. Peña, C.J., et al., Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat Commun, 2019. 10(1): p. 5098.
75. Balouek, J.A., et al., Reactivation of Early-Life Stress-Sensitive Neuronal Ensembles Contributes to Lifelong Stress Hypersensitivity. J Neurosci, 2023. 43(34): p. 5996-6009.
76. Malter Cohen, M., et al., Early-life stress has persistent effects on amygdala function and development in mice and humans. Proc Natl Acad Sci U S A, 2013. 110(45): p. 18274-8.
77. Catale, C., et al., Early-life social stress induces permanent alterations in plasticity and perineuronal nets in the mouse anterior cingulate cortex. Eur J Neurosci, 2022. 56(10): p. 5763-5783.
78. Macrì, S., F. Zoratto, and G. Laviola, Early-stress regulates resilience, vulnerability and experimental validity in laboratory rodents through mother-offspring hormonal transfer. Neurosci Biobehav Rev, 2011. 35(7): p. 1534-43.
79. Eiland, L. and B.S. McEwen, Early life stress followed by subsequent adult chronic stress potentiates anxiety and blunts hippocampal structural remodeling. Hippocampus, 2012. 22(1): p. 82-91.
80. Aisa, B., et al., Effects of maternal separation on hypothalamic-pituitary-adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience, 2008. 154(4): p. 1218-26.
81. Bian, Y., et al., Prolonged Maternal Separation Induces the Depression-Like Behavior Susceptibility to Chronic Unpredictable Mild Stress Exposure in Mice. Biomed Res Int, 2021. 2021: p. 6681397.
82. Zhang, X., et al., Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science, 2004. 305(5681): p. 217.
83. Jacobs, B.L. and E.C. Azmitia, Structure and function of the brain serotonin system. Physiol Rev, 1992. 72(1): p. 165-229.
84. Fujita, T., et al., Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci, 2023. 16: p. 1226645.
85. Pourhamzeh, M., et al., The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol, 2022. 42(6): p. 1671-1692.
86. Bacqué-Cazenave, J., et al., Serotonin in Animal Cognition and Behavior. Int J Mol Sci, 2020. 21(5).
87. Owens, M.J. and C.B. Nemeroff, Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clinical chemistry, 1994. 40(2): p. 288-295.
88. Belmaker, R.H. and G. Agam, Major depressive disorder. N Engl J Med, 2008. 358(1): p. 55-68.
89. Ravindran, L.N. and M.B. Stein, The pharmacologic treatment of anxiety disorders: a review of progress. J Clin Psychiatry, 2010. 71(7): p. 839-54.
90. Petrova, A., D.F. Moffett, and T. Ganguly, ELUCIDATION OF SEROTONIN-RELATED PROFILES IN AEDES AEGYPTI DIGESTIVE TRACT PREDICTS NOVEL PUTATIVE ROLES OF SEROTONIN. Global Journal of Advanced Research, 2017. 4: p. 136-151.
91. Bortolato, M., et al., The role of the serotonergic system at the interface of aggression and suicide. Neuroscience, 2013. 236: p. 160-85.
92. Albert, P.R., Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci, 2012. 367(1601): p. 2402-15.
93. dos Santos Júnior, M.A., et al., Consequences of ethanol exposure on neurodevelopment, in Neuroscience of Alcohol. 2019, Elsevier. p. 47-55.
94. Biaggioni, I., et al., Primer on the autonomic nervous system. 2022: Academic Press.
95. Bengel, D., et al., Cellular localization and expression of the serotonin transporter in mouse brain. Brain Res, 1997. 778(2): p. 338-45.
96. Holmes, A., D.L. Murphy, and J.N. Crawley, Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry, 2003. 54(10): p. 953-9.
97. Blier, P. and C. De Montigny, Current advances and trends in the treatment of depression. Trends in pharmacological sciences, 1994. 15(7): p. 220-226.
98. Murrough, J.W., et al., Reduced amygdala serotonin transporter binding in posttraumatic stress disorder. Biol Psychiatry, 2011. 70(11): p. 1033-8.
99. Lee, J.H., et al., Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res, 2007. 58(1): p. 32-9.
100. Kloke, V., et al., Unexpected effects of early-life adversity and social enrichment on the anxiety profile of mice varying in serotonin transporter genotype. Behav Brain Res, 2013. 247: p. 248-58.
101. Wellman, C., et al., Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. Journal of Neuroscience, 2007. 27(3): p. 684-691.
102. Carroll, J.C., et al., Effects of mild early life stress on abnormal emotion-related behaviors in 5-HTT knockout mice. Behavior genetics, 2007. 37: p. 214-222.
103. Wellman, C.L., et al., Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci, 2007. 27(3): p. 684-91.
104. Hohoff, C., et al., Effect of acute stressor and serotonin transporter genotype on amygdala first wave transcriptome in mice. PLoS One, 2013. 8(3): p. e58880.
105. Fineberg, S.K. and D.A. Ross, Oxytocin and the Social Brain. Biol Psychiatry, 2017. 81(3): p. e19-e21.
106. Hoge, E.A., et al., Oxytocin levels in social anxiety disorder. CNS Neurosci Ther, 2008. 14(3): p. 165-70.
107. Amico, J.A., J.M. Johnston, and A.H. Vagnucci, Suckling-induced attenuation of plasma cortisol concentrations in postpartum lactating women. Endocr Res, 1994. 20(1): p. 79-87.
108. Uvnäs-Moberg, K., Neuroendocrinology of the mother-child interaction. Trends Endocrinol Metab, 1996. 7(4): p. 126-31.
109. Oya, K., et al., Efficacy and safety of oxytocin augmentation therapy for schizophrenia: an updated systematic review and meta-analysis of randomized, placebo-controlled trials. Eur Arch Psychiatry Clin Neurosci, 2016. 266(5): p. 439-50.
110. Koch, S.B., et al., Intranasal oxytocin as strategy for medication-enhanced psychotherapy of PTSD: salience processing and fear inhibition processes. Psychoneuroendocrinology, 2014. 40: p. 242-56.
111. Hofmann, J., et al., Oxytocin receptor is a potential biomarker of the hyporesponsive HPA axis subtype of PTSD and might be modulated by HPA axis reactivity traits in humans and mice. Psychoneuroendocrinology, 2021. 129: p. 105242.
112. Dodhia, S., et al., Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder. Neuropsychopharmacology, 2014. 39(9): p. 2061-9.
113. Neumann, I.D. and R. Landgraf, Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci, 2012. 35(11): p. 649-59.
114. van den Pol, A.N., Neuropeptide transmission in brain circuits. Neuron, 2012. 76(1): p. 98-115.
115. Mairesse, J., et al., Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinology, 2015. 62: p. 36-46.
116. Kombian, S.B., et al., Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. Prog Brain Res, 2002. 139: p. 235-46.
117. Mitre, M., et al., A Distributed Network for Social Cognition Enriched for Oxytocin Receptors. J Neurosci, 2016. 36(8): p. 2517-35.
118. Yao, S., et al., Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. Elife, 2017. 6: p. e31373.
119. Nakajima, M., A. Görlich, and N. Heintz, Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell, 2014. 159(2): p. 295-305.
120. Wrobel, L.J., et al., Oxytocin and vasopressin enhance synaptic transmission in the hypoglossal motor nucleus of young rats by acting on distinct receptor types. Neuroscience, 2010. 165(3): p. 723-35.
121. Owen, S.F., et al., Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature, 2013. 500(7463): p. 458-62.
122. Knobloch, H.S., et al., Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 2012. 73(3): p. 553-66.
123. Huber, D., P. Veinante, and R. Stoop, Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 2005. 308(5719): p. 245-8.
124. Oubraim, S., R.Y. Shen, and S. Haj-Dahmane, Oxytocin excites dorsal raphe serotonin neurons and bidirectionally gates their glutamate synapses. iScience, 2023. 26(5): p. 106707.
125. Kumsta, R. and M. Heinrichs, Oxytocin, stress and social behavior: neurogenetics of the human oxytocin system. Curr Opin Neurobiol, 2013. 23(1): p. 11-6.
126. Bartz, J.A. and L.A. McInnes, CD38 regulates oxytocin secretion and complex social behavior. Bioessays, 2007. 29(9): p. 837-41.
127. Liu, H.X., et al., Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci Lett, 2008. 448(1): p. 67-70.
128. Martucci, L.L., et al., A multiscale analysis in CD38(-/-) mice unveils major prefrontal cortex dysfunctions. Faseb j, 2019. 33(5): p. 5823-5835.
129. Heim, C., et al., Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol Psychiatry, 2009. 14(10): p. 954-8.
130. Sanders, G., J. Freilicher, and S.L. Lightman, Psychological stress of exposure to uncontrollable noise increases plasma oxytocin in high emotionality women. Psychoneuroendocrinology, 1990. 15(1): p. 47-58.
131. Purba, J.S., et al., Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry, 1996. 53(2): p. 137-43.
132. Meynen, G., et al., Hypothalamic oxytocin mRNA expression and melancholic depression. Mol Psychiatry, 2007. 12(2): p. 118-9.
133. Parker, K.J., et al., Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res, 2010. 178(2): p. 359-62.
134. Onaka, T., Y. Takayanagi, and M. Yoshida, Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol, 2012. 24(4): p. 587-98.
135. Heinrichs, M., et al., Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry, 2003. 54(12): p. 1389-98.
136. Tran, I. and A.K. Gellner, Long-term effects of chronic stress models in adult mice. J Neural Transm (Vienna), 2023. 130(9): p. 1133-1151.
137. Elsworth, J.D. and R.H. Roth, Dopamine synthesis, uptake, metabolism, and receptors: relevance to gene therapy of Parkinson′s disease. Exp Neurol, 1997. 144(1): p. 4-9.
138. Klein, M.O., et al., Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol, 2019. 39(1): p. 31-59.
139. de Wit, H., Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol, 2009. 14(1): p. 22-31.
140. Dalley, J.W., et al., Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav, 2008. 90(2): p. 250-60.
141. Dalley, J.W., B.J. Everitt, and T.W. Robbins, Impulsivity, compulsivity, and top-down cognitive control. Neuron, 2011. 69(4): p. 680-94.
142. Belin, D., et al., High impulsivity predicts the switch to compulsive cocaine-taking. Science, 2008. 320(5881): p. 1352-5.
143. Bechara, A., Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci, 2005. 8(11): p. 1458-63.
144. Xie, C., et al., Identification of hyperactive intrinsic amygdala network connectivity associated with impulsivity in abstinent heroin addicts. Behav Brain Res, 2011. 216(2): p. 639-646.
145. Ko, C.H., et al., Altered gray matter density and disrupted functional connectivity of the amygdala in adults with Internet gaming disorder. Prog Neuropsychopharmacol Biol Psychiatry, 2015. 57: p. 185-92.
146. Kalyoncu, A. and A.S. Gonul, The Emerging Role of SPECT Functional Neuroimaging in Schizophrenia and Depression. Front Psychiatry, 2021. 12: p. 716600.
147. Nummenmaa, L., K. Seppälä, and V. Putkinen, Molecular Imaging of the Human Emotion Circuit, in Social and Affective Neuroscience of Everyday Human Interaction: From Theory to Methodology, P.S. Boggio, et al., Editors. 2023, Springer
Copyright 2023, The Author(s). Cham (CH). p. 3-21.
148. Lee, B., et al., Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci, 2009. 29(47): p. 14734-40.
149. Buckholtz, J.W., et al., Dopaminergic network differences in human impulsivity. Science, 2010. 329(5991): p. 532.
150. Trifilieff, P. and D. Martinez, Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology, 2014. 76 Pt B(0 0): p. 498-509.
151. Kim, B., et al., Dopamine D2 receptor-mediated circuit from the central amygdala to the bed nucleus of the stria terminalis regulates impulsive behavior. Proc Natl Acad Sci U S A, 2018. 115(45): p. E10730-e10739.
152. Chu, H.Y., et al., Target-specific suppression of GABA release from parvalbumin interneurons in the basolateral amygdala by dopamine. J Neurosci, 2012. 32(42): p. 14815-20.
153. Olsson, A. and E.A. Phelps, Social learning of fear. Nature neuroscience, 2007. 10(9): p. 1095-1102.
154. Olsson, A., K.I. Nearing, and E.A. Phelps, Learning fears by observing others: the neural systems of social fear transmission. Soc Cogn Affect Neurosci, 2007. 2(1): p. 3-11.
155. Jeon, D., et al., Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci, 2010. 13(4): p. 482-8.
156. Gonzalez-Liencres, C., et al., Emotional contagion in mice: the role of familiarity. Behav Brain Res, 2014. 263: p. 16-21.
157. Pisansky, M.T., et al., Oxytocin enhances observational fear in mice. Nat Commun, 2017. 8(1): p. 2102.
158. Terranova, J.I., et al., Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron, 2022.
159. Smith, M.L., N. Asada, and R.C. Malenka, Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science, 2021. 371(6525): p. 153-159.
160. Allsop, S.A., et al., Corticoamygdala Transfer of Socially Derived Information Gates Observational Learning. Cell, 2018. 173(6): p. 1329-1342.e18.
161. Kim, S.W., et al., Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron, 2023. 111(3): p. 418-429.e4.
162. Kim, A., S. Keum, and H.S. Shin, Observational fear behavior in rodents as a model for empathy. Genes Brain Behav, 2019. 18(1): p. e12521.
163. Lupien, S.J., et al., The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Frontiers in neuroendocrinology, 2018. 49: p. 91-105.
164. Terranova, J.I., et al., Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron, 2022. 110(8): p. 1416-1431. e13.
165. Keum, S. and H.S. Shin, Neural Basis of Observational Fear Learning: A Potential Model of Affective Empathy. Neuron, 2019. 104(1): p. 78-86.
166. Ito, H., et al., Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology, 2010. 58(4-5): p. 746-757.
167. Kim, B.S., et al., Differential regulation of observational fear and neural oscillations by serotonin and dopamine in the mouse anterior cingulate cortex. Psychopharmacology (Berl), 2014. 231(22): p. 4371-81.
168. Crişan, L.G., et al., Genetic contributions of the serotonin transporter to social learning of fear and economic decision making. Soc Cogn Affect Neurosci, 2009. 4(4): p. 399-408.
169. Uchida, S., et al., Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci, 2010. 30(45): p. 15007-18.
170. Brust, V., P.M. Schindler, and L. Lewejohann, Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Frontiers in zoology, 2015. 12(Suppl 1): p. S17.
171. Jankord, R., et al., Stress vulnerability during adolescent development in rats. Endocrinology, 2011. 152(2): p. 629-638.
172. Llorente, R., et al., Long term sex-dependent psychoneuroendocrine effects of maternal deprivation and juvenile unpredictable stress in rats. J Neuroendocrinol, 2011. 23(4): p. 329-44.
173. Fang, X., et al., Chronic unpredictable stress induces depression-related behaviors by suppressing AgRP neuron activity. Mol Psychiatry, 2021. 26(6): p. 2299-2315.
174. Karamihalev, S., et al., Social dominance mediates behavioral adaptation to chronic stress in a sex-specific manner. Elife, 2020. 9.
175. Tóth, M., et al., Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behavioral neuroscience, 2008. 122(4): p. 849.
176. Nollet, M., A.M. Le Guisquet, and C. Belzung, Models of depression: unpredictable chronic mild stress in mice. Curr Protoc Pharmacol, 2013. Chapter 5: p. Unit 5.65.
177. Matsuda, S., et al., Persistent c-fos expression in the brains of mice with chronic social stress. Neurosci Res, 1996. 26(2): p. 157-70.
178. de Andrade, J.S., et al., Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis. Behav Brain Res, 2013. 250: p. 81-90.
179. Hassamal, S., Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories. Front Psychiatry, 2023. 14: p. 1130989.
180. Teissier, A., et al., Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry, 2020. 25(6): p. 1159-1174.
181. Lutz, P.E., et al., Association of a History of Child Abuse With Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence. Am J Psychiatry, 2017. 174(12): p. 1185-1194.
182. Kirsch, P., et al., Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci, 2005. 25(49): p. 11489-93.
183. Domes, G., et al., Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry, 2007. 62(10): p. 1187-90.
184. Hurlemann, R., et al., Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci, 2010. 30(14): p. 4999-5007.
185. Greenberg, B.D., et al., Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet, 1999. 88(1): p. 83-7.
186. Lee, H.J., et al., Influence of the serotonin transporter promoter gene polymorphism on susceptibility to posttraumatic stress disorder. Depress Anxiety, 2005. 21(3): p. 135-9.
187. Garpenstrand, H., et al., Human fear conditioning is related to dopaminergic and serotonergic biological markers. Behav Neurosci, 2001. 115(2): p. 358-64.
188. Brocke, B., et al., Serotonin transporter gene variation impacts innate fear processing: Acoustic startle response and emotional startle. Mol Psychiatry, 2006. 11(12): p. 1106-12.
189. Lonsdorf, T.B., et al., Genetic gating of human fear learning and extinction: possible implications for gene-environment interaction in anxiety disorder. Psychol Sci, 2009. 20(2): p. 198-206.
190. Lesch, K.P., et al., Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 1996. 274(5292): p. 1527-31.
191. de Souza Caetano, K.A., A.R. de Oliveira, and M.L. Brandão, Dopamine D2 receptors modulate the expression of contextual conditioned fear: role of the ventral tegmental area and the basolateral amygdala. Behav Pharmacol, 2013. 24(4): p. 264-74.
192. de Oliveira, A.R., et al., Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala. Neurobiol Learn Mem, 2011. 95(1): p. 37-45.
指導教授 黃佳瑜(Chia-Yu Huang) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明