參考文獻 |
(1) Park, J.; Kim, J.; Yun, H.-S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616 (7958), 724-730.
(2) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society 2009, 131 (17), 6050-6051.
(3) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2 (1), 591.
(4) Chiang, C.-H.; Lin, J.-W.; Wu, C.-G. One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. Journal of materials chemistry A 2016, 4 (35), 13525-13533.
(5) Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A 2014, 2 (38), 15897-15903.
(6) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials 2014, 13 (9), 897-903.
(7) Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy & Environmental Science 2017, 10 (2), 516-522.
(8) Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W.-Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 2020, 367 (6484), 1352-1358.
(9) Zhao, R.; Xie, L.; Zhuang, R.; Wu, T.; Zhao, R.; Wang, L.; Sun, L.; Hua, Y. Interfacial defect passivation and charge carrier management for efficient perovskite solar cells via a highly crystalline small molecule. ACS Energy Letters 2021, 6 (12), 4209-4219.
(10) Sandhu, S.; Yadagiri, B.; Muthu, S.; Kaliamurthy, A. K.; Park, J.; Kang, H. C.; Ryu, J.; Lee, J.-J. Defect Passivation by a Donor–Acceptor–Donor‐Structured Small Molecule via Bidentate Anchoring for Efficient and Stable Perovskite Solar Cells. Solar RRL 2022, 6 (12), 2200786.
(11) Bi, H.; Han, G.; Guo, M.; Ding, C.; Hayase, S.; Zou, H.; Shen, Q.; Guo, Y.; Hou, W. Top‐contacts‐interface engineering for high‐performance perovskite solar cell with reducing lead leakage. Solar RRL 2022, 6 (9), 2200352.
(12) Long, J.; Sheng, W.; Dai, R.; Huang, Z.; Yang, J.; Zhang, J.; Li, X.; Tan, L.; Chen, Y. Understanding the mechanism between antisolvent dripping and additive doping strategies on the passivation effects in perovskite solar cells. ACS Applied Materials & Interfaces 2020, 12 (50), 56151-56160.
(13) Tao, J.; Wang, Z.; Wang, H.; Shen, J.; Liu, X.; Xue, J.; Guo, H.; Fu, G.; Kong, W.; Yang, S. Additive engineering for efficient and stable MAPbI3-Perovskite solar cells with an efficiency of over 21%. ACS Applied Materials & Interfaces 2021, 13 (37), 44451-44459.
(14) Xie, Y.; Feng, J.; Chen, M.; Zhu, X.; Zhou, Y.; Li, Z.; Yang, D.; Frank Liu, S. Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (7), 8034-8041.
(15) Zhao, W.; Lin, H.; Li, Y.; Wang, D.; Wang, J.; Liu, Z.; Yuan, N.; Ding, J.; Wang, Q.; Liu, S. Symmetrical acceptor–donor–acceptor molecule as a versatile defect passivation agent toward efficient FA0. 85MA0. 15PbI3 perovskite solar cells. Advanced Functional Materials 2022, 32 (19), 2112032.
(16) Yu, R.; Wu, G.; Shi, R.; Ma, Z.; Dang, Q.; Qing, Y.; Zhang, C.; Xu, K.; Tan, Z. a. Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells. Advanced Energy Materials 2023, 13 (1), 2203127.
(17) Yang, C.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Bao, Q.; Ding, X.; Yang, X.; Cheng, M. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Letters 2021, 6 (8), 2690-2696.
(18) Alagumalai, A.; Venu Rajendran, M.; Ganesan, S.; Sudhakaran Menon, V.; Raman, R. K.; Chelli, S. M.; Muthukumar Vijayasayee, S.; Gurusamy Thangavelu, S. A.; Krishnamoorthy, A. Interface Modification with Holistically Designed Push–Pull D–π–A Organic Small Molecule Facilitates Band Alignment Engineering, Efficient Defect Passivation, and Enhanced Hydrophobicity in Mixed Cation Planar Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (6), 6783-6796.
(19) Ding, X.; Wang, H.; Miao, Y.; Chen, C.; Zhai, M.; Yang, C.; Wang, B.; Tian, Y.; Cheng, M. Bi (trifluoromethyl) benzoic acid-assisted shallow defect passivation for perovskite solar cells with an efficiency exceeding 21%. ACS Applied Materials & Interfaces 2022, 14 (3), 3930-3938.
(20) Velusamy, A.; Yu, C. H.; Afraj, S. N.; Lin, C. C.; Lo, W. Y.; Yeh, C. J.; Wu, Y. W.; Hsieh, H. C.; Chen, J.; Lee, G. H. Thienoisoindigo (TII)‐Based Quinoidal Small Molecules for High‐Performance n‐Type Organic Field Effect Transistors. Advanced Science 2021, 8 (1), 2002930.
(21) Xia, J.; Sohail, M.; Nazeeruddin, M. K. Efficient and stable perovskite solar cells by tailoring of interfaces. Advanced Materials 2023, 35 (31), 2211324.
(22) Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; bin Mohd Yusoff, A. R.; Nazeeruddin, M. K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews 2020, 49 (13), 4496-4526.
(23) Li, H.; Hao, X.; Chang, B.; Li, Z.; Wang, L.; Pan, L.; Chen, X.; Yin, L. Stiffening the Pb-X framework through a π-conjugated small-molecule cross-linker for high-performance inorganic CsPbI2Br perovskite solar cells. ACS Applied Materials & Interfaces 2021, 13 (34), 40489-40501.
(24) Zhu, J.; Kim, D. H.; Kim, J. D.; Lee, D. G.; Kim, W. B.; Chen, S. W.; Kim, J. Y.; Lee, J. M.; Lee, H.; Han, G. S. All-in-one Lewis base for enhanced precursor and device stability in highly efficient perovskite solar cells. ACS Energy Letters 2021, 6 (10), 3425-3434.
(25) Lao, Y.; Yang, S.; Yu, W.; Guo, H.; Zou, Y.; Chen, Z.; Xiao, L. Multifunctional π‐Conjugated Additives for Halide Perovskite. Advanced Science 2022, 9 (17), 2105307.
(26) Sun, J.; Chandrasekaran, N.; Liu, C.; Scully, A. D.; Yin, W.; Ng, C. K.; Jasieniak, J. J. Enhancement of 3D/2D perovskite solar cells using an F4TCNQ molecular additive. ACS Applied Energy Materials 2020, 3 (9), 8205-8215.
(27) Sun, Y.; Zhang, J.; Yu, H.; Huang, C.; Huang, J. Several triazine-based small molecules assisted in the preparation of high-performance and stable perovskite solar cells by trap passivation and heterojunction engineering. ACS Applied Materials & Interfaces 2022, 14 (5), 6625-6637.
(28) Zhao, C.; Zhang, H.; Krishna, A.; Xu, J.; Yao, J. Interface engineering for highly efficient and stable perovskite solar cells. Advanced Optical Materials 2024, 12 (7), 2301949.
(29) Chiang, C. H.; Chen, H. T.; Chen, W. Y.; Wang, W. T.; Feng, S. P.; Wu, C. G. Tin Oxide/Amphiphilic Polymer Double‐Layered Hole Transporter for High‐Efficiency Tin Perovskite Solar Modules. Advanced Energy Materials, 2400346.
(30) Kim, S.; Lee, Y. J.; Park, J. D.; Kang, G.; Park, M. Selective Passivation of Grain Boundaries via Incorporation of a Fluidic Small Molecule in Perovskite Solar Absorbers. ACS Applied Energy Materials 2021, 4 (9), 10059-10068.
(31) Cai, Y.; Cui, J.; Chen, M.; Zhang, M.; Han, Y.; Qian, F.; Zhao, H.; Yang, S.; Yang, Z.; Bian, H. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Advanced Functional Materials 2021, 31 (7), 2005776.
(32) Elbohy, H.; Suzuki, H.; Nishikawa, T.; Htun, T.; Tsutsumi, K.; Nakano, C.; Kyaw, A. K. K.; Hayashi, Y. Benzophenone: A Small Molecule Additive for Enhanced Performance and Stability of Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2023, 15 (38), 45177-45189. |