參考文獻 |
(1) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 2005, 127 (48), 16835-16847.
(2) Newell, R.; Raimi, D.; Villanueva, S.; Prest, B. Global energy outlook 2021: Pathways from Paris. Resources for the Future, 2021, 8.
(3) Omer, A. M. Green energies and the environment. Renewable and sustainable energy reviews, 2008, 12 (7), 1789-1821.
(4) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25 (5), 676-677.
(5) Lin, H.; Yang, M.; Ru, X.; Wang, G.; Yin, S.; Peng, F.; Hong, C.; Qu, M.; Lu, J.; Fang, L. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 1-11.
(6) Green, M. A.; Dunlop, E. D.; Hohl‐Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar cell efficiency tables (Version 64). Progress in Photovoltaics: Research and Applications, 2022, 30 (7), 687-701.
(7) O′regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353 (6346), 737-740.
(8) Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature, 2023, 613 (7942), 60-65.
(9) Sharma, S.; Jain, K. K.; Sharma, A. Solar cells: in research and applications—a review. Materials Sciences and Applications, 2015, 6 (12), 1145.
(10) https://www.nrel.gov/pv/interactive-cell-efficiency.html (accessed.
(11) Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 54-64.
(12) Ahmad, M. S.; Pandey, A. K.; Abd Rahim, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 2017, 77, 89-108.
(13) Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 1961, 32 (3), 510-519.
(14) Kalyanasundaram, K.; Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews, 1998, 177 (1), 347-414.
(15) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993, 115 (14), 6382-6390.
(16) Nazeeruddin, M. K.; Zakeeruddin, S.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M. Acid− Base equilibria of (2, 2 ‘-bipyridyl-4, 4 ‘-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 1999, 38 (26), 6298-6305.
(17) Nguyen, T.-D.; Lin, C.-H.; Mai, C.-L.; Wu, C.-G. Function of tetrabutylammonium on high-efficiency ruthenium sensitizers for both outdoor and indoor DSC application. ACS Omega, 2019, 4 (7), 11414-11423.
(18) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110 (11), 6595-6663.
(19) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B, 2003, 107 (34), 8981-8987.
(20) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano, 2009, 3 (10), 3103-3109.
(21) Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P. High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano, 2010, 4 (10), 6032-6038.
(22) Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine. The Journal of Physical Chemistry C 2009, 113 (15), 6290-6297.
(23) Bessho, T.; Yoneda, E.; Yum, J.-H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. New paradigm in molecular engineering of sensitizers for solar cell applications. Journal of the American Chemical Society, 2009, 131 (16), 5930-5934.
(24) Mauri, L.; Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Recent investigations on thiocyanate-free ruthenium (II) 2, 2′-bipyridyl complexes for dye-sensitized solar cells. Molecules 2021, 26 (24), 7638.
(25) Hussain, M.; Islam, A.; Bedja, I.; Gupta, R. K.; Han, L.; El-Shafei, A. A comparative study of Ru (II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? Physical Chemistry Chemical Physics 2014, 16 (28), 14874-14881.
(26) Kinoshita, T.; Dy, J. T.; Uchida, S.; Kubo, T.; Segawa, H. Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nature Photonics 2013, 7 (7), 535-539.
(27) Kinoshita, T.; Nonomura, K.; Joong Jeon, N.; Giordano, F.; Abate, A.; Uchida, S.; Kubo, T.; Seok, S. I.; Nazeeruddin, M. K.; Hagfeldt, A. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 2015, 6 (1), 8834.
(28) Kinoshita, T.; Otsubo, M.; Ono, T.; Segawa, H. Enhancement of near-infrared singlet–triplet absorption of Ru (II) sensitizers for improving conversion efficiency of solar cells. ACS Applied Energy Material,s 2021, 4 (7), 7052-7063.
(29) Stradiotto, M.; Fujdala, K. L.; Tilley, T. D. Iridium (III) complexes of the new tridentate bis (8-quinolyl) silyl (‘NSiN’) ligandElectronic supplementary information (ESI) available: synthetic and crystallographic details for 1–5. Chemical Communications, 2001, (13), 1200-1201.
(30) Sangtrirutnugul, P.; Stradiotto, M.; Tilley, T. D. Rhodium complexes containing a tridentate bis (8-quinolyl) methylsilyl ligand: Synthesis and reactivity. Organometallics, 2006, 25 (7), 1607-1617.
(31) Prieto-Pascual, U.; Alli, I. V.; Bustos, I.; Vitorica-Yrezabal, I. J.; Matxain, J. M.; Freixa, Z.; Huertos, M. A. Air-stable 14-electron rhodium (III) complexes bearing Si, N ligands as catalysts in hydrolysis of silanes. Organometallics, 2023, 42 (20), 2991-2998.
(32) Prieto-Pascual, U.; de Morentin, A. M.; Choquesillo-Lazarte, D.; Rodríguez-Diéguez, A.; Freixa, Z.; Huertos, M. A. Catalytic activation of remote alkenes through silyl-rhodium (III) complexes. Dalton Transactions, 2023, 52 (26), 9090-9096.
(33) Ren, S.; Xie, S.; Zheng, T.; Wang, Y.; Xu, S.; Xue, B.; Li, X.; Sun, H.; Fuhr, O.; Fenske, D. Synthesis of silyl iron hydride via Si–H activation and its dual catalytic application in the hydrosilylation of carbonyl compounds and dehydration of benzamides. Dalton Transactions, 2018, 47 (12), 4352-4359.
(34) Xu, S.; Zhang, P.; Li, X.; Xue, B.; Sun, H.; Fuhr, O.; Fenske, D. Synthesis of a silyl cobalt hydride and its catalytic performance in kumada coupling reactions. Chemistry–An Asian Journal 2017, 12 (11), 1234-1239.
(35) Prieto-Pascual, U.; Rodríguez-Diéguez, A.; Freixa, Z.; Huertos, M. A. Tailor-made synthesis of hydrosilanols, hydrosiloxanes, and silanediols catalyzed by di-silyl rhodium (III) and iridium (III) complexes. Inorganic Chemistry, 2023, 62 (7), 3095-3105.
(36) Wada, H.; Tobita, H.; Ogino, H. Intramolecular aromatic C− H bond activation by a silylene ligand in a methoxy-bridged bis (silylene)−ruthenium complex. Organometallics, 1997, 16 (18), 3870-3872.
(37) Takaoka, A.; Mendiratta, A.; Peters, J. C. E− H bond activation reactions (E= H, C, Si, Ge) at ruthenium: Terminal phosphides, silylenes, and germylenes. Organometallics, 2009, 28 (13), 3744-3753.
(38) McClure, B. A.; Rack, J. J. Two-color reversible switching in a photochromic ruthenium sulfoxide complex. Angew. Chem., Int. Ed, 2009, 48 (45), 8556-8558.
(39) Cordones, A. A.; Lee, J. H.; Hong, K.; Cho, H.; Garg, K.; Boggio-Pasqua, M.; Rack, J. J.; Huse, N.; Schoenlein, R. W.; Kim, T. K. Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex. Nature communications, 2018, 9 (1), 1989.
(40) Sundin, E.; Johansson, F.; Becerril, V. S.; Wallenstein, J.; Gasslander, A.; Mårtensson, J.; Abrahamsson, M. Two-colour photoswitching in photoresponsive inorganic thin films. Materials Advances, 2021, 2 (7), 2328-2333.
(41) Turlington, M. D.; Troian-Gautier, L.; Sampaio, R. N.; Beauvilliers, E. E.; Meyer, G. J. Control of Excited-State Supramolecular Assembly Leading to Halide Photorelease. Inorganic Chemistry, 2019, 58 (5), 3316-3328.
(42) Müller, V.; Ghorai, D.; Capdevila, L.; Messinis, A. M.; Ribas, X.; Ackermann, L. C–F activation for C (sp2)–C (sp3) cross-coupling by a secondary phosphine oxide (SPO)-nickel complex. Organic Letters, 2020, 22 (17), 7034-7040.
(43) Nguyen, T.-D.; Lin, C.-H.; Wu, C.-G. Effect of the CF3 substituents on the charge-transfer kinetics of high-efficiency cyclometalated ruthenium sensitizers. Inorganic Chemistry, 2017, 56 (1), 252-260.
(44) Nguyen, T.-D.; Lan, Y.-P.; Wu, C.-G. High-efficiency cycloruthenated sensitizers for dye-sensitized solar cells. Inorganic Chemistry, 2018, 57 (3), 1527-1534.
(45) Wang, Y.; Xu, S.; Chen, T.; Guo, H.; Liu, Q.; Ye, B.; Zhang, Z.; He, Z.; Cao, S. Synthesis and preliminary photovoltaic behavior study of a soluble polyimide containing ruthenium complexes. Polymer Chemistry, 2010, 1 (7), 1048-1055.
(46) Babij, N. R.; McCusker, E. O.; Whiteker, G. T.; Canturk, B.; Choy, N.; Creemer, L. C.; Amicis, C. V. D.; Hewlett, N. M.; Johnson, P. L.; Knobelsdorf, J. A. NMR chemical shifts of trace impurities: Industrially preferred solvents used in process and green chemistry. Organic Process Research & Development, 2016, 20 (3), 661-667.
(47) Chen, Z.; Jaramillo, T. F. The use of UV-visible spectroscopy to measure the band gap of a semiconductor. Department of Chemical Engineering, Stanford University Edited by Bruce Brunschwig, 2017, 9, 19.
(48) Hayes, B. L. Recent advances in microwave-assisted synthesis. Aldrichimica Acta 2004, 37 (2), 66-77.
(49) Sasaki, K. T., Yukio; Kobayashi, Katsumi. 光電変換素子、金属錯体色素、色素増感太陽電池用色素吸着液組成物、色素増感太陽電池およびその製造方法. Japan, 2013.
(50) Dean, J. A. Lange′s Handbook of Chemistry; McGRAW-HILL, INC, 1998.
(51) Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The Journal of Physical Chemistry Letters, 2018, 9, 6814-6817. |