博碩士論文 110223088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.147.53.90
姓名 程子嘉(Tzu-Chia Cheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於染料敏化太陽能電池之不同配位原子(碳、氮、氧、矽、硫及磷)與釕鍵結之錯合物染料性質探討
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 染料敏化太陽能電池 Dye-sensitized solar cells (簡稱DSCs)至今已發展數十年,其中釕錯合物染料為具代表性的系列,於本研究中使用碳、矽、氮、磷、氧、硫等不同原子與釕金屬鍵結,最終成功合成出以氮碳為配位原子與釕鍵結的雜環錯合物染料HBC23;以及具光致變色(經照光後可從氮硫變為氮氧做配位原子的釕錯合物)的染料PC1;其中選了三個含矽的配位基8,8’-(methylsilanediyl)diquinoline (NSiN)、8-dimethylsilylquinoline (NSi) 及(2-(dimethylsilyl)phenyl)diphenylphosphane (PSi)與釕金屬錯合,但僅NSiN成功與釕鍵結形成含乙酯基的錯合物,然而在隨後的水解反應中被分解;根據計算上述的不同原子與釕鍵結產生的錯合物鍵能則可發現:釕矽鍵能最低(-309 kJ/mol),而HBC23以有sp2電子的碳與釕鍵結之鍵能最高(-1070 kJ/mol),在此假設了一錯合物Ru-NC用於計算鍵能(以8-Isopropylquinoline與釕錯合,結構與NSi相似僅將矽改為碳),其sp3電子的碳與釕的鍵能僅-463 kJ/mol,因此是需具有sp2電子的碳才能與釕形成強鍵結;具光致變色性質的染料PC1鍵能經計算是釕氧鍵(-757 kJ/mol)大於釕硫鍵(-697 kJ/mol),因此可解釋染料在照光激發後會傾向形成更穩定的釕氧鍵錯合物,並在照光10分鐘後於波長510 nm處吸收係數提升了4300 M-1 cm-1。
摘要(英) Dye-sensitized solar cells (DSCs) have been under development for several decades, with ruthenium metal complex dyes being a representative series. In this study, various atoms such as carbon, silicon, nitrogen, phosphorus, oxygen, and sulfur were used to bond with ruthenium metal. Finally, we successfully synthesized of the heterocyclic complex dye HBC23, which uses nitrogen and carbon as coordinating atoms bonded to ruthenium. Additionally, we synthesized the dye PC1, which exhibits photochromic properties (it can change from nitrogen-sulfur to nitrogen-oxygen coordination upon illumination). Three silicon-containing chelating agents were selected: 8,8′-(methylsilanediyl)diquinoline (NSiN), 8-dimethylsilylquinoline (NSi), and (2-(dimethylsilyl)phenyl) diphenylphosphane (PSi) to form complexes with ruthenium metal. Among these, only NSiN successfully bonded with ruthenium to form an ethyl ester complex, which subsequently decomposed during a hydrolysis reaction. Calculated bond energies for these various atom-ruthenium complexes revealed that the ruthenium-silicon bond has the lowest bond energy (-309 kJ/mol), while the HBC23 complex, featuring sp2 carbon bonded to ruthenium, has the highest bond energy (-1070 kJ/mol). To further explore this, we hypothesized a complex Ru-NC for bond energy calculation (formed by bonding 8-isopropylquinoline with ruthenium, similar in structure to NSi but with silicon replaced by carbon). The bond energy of sp3 carbon bonded to ruthenium is only -463 kJ/mol, indicating that only sp2 carbon can form a strong bond with ruthenium. For the photochromic dye PC1, the calculated bond energies show that the ruthenium-oxygen bond (-757 kJ/mol) is stronger than the ruthenium-sulfur bond (-697 kJ/mol). This explains why the dye tends to form a more stable ruthenium-oxygen complex upon absorbing energy. After 10 minutes of illumination, the absorption coefficient at a wavelength of 510 nm increased by 4300 M-1 cm-1.
關鍵字(中) ★ 釕金屬錯合物染料 關鍵字(英)
論文目次 摘要 V
Abstract VII
圖摘要 IX
謝誌 X
目錄 XI
圖目錄 XIV
表目錄 XVI
第一章、緒論 1
1-1、前言 1
1-2、太陽能電池的種類及發展 2
1-3、染料敏化太陽能電池的架構及工作原理 6
1-4、染料分子所需具備之特性 8
1-5、以氮配位的釕金屬錯合物染料介紹 9
1-5-1、具代表性的的氮配位釕金屬染料 9
1-5-2、釕氮配位錯合物染料最高效率 13
1-6、更換配位原子以改變釕金屬染料吸收特性 15
1-6-1、以碳為配位點所形成之雜環金屬錯合物 15
1-6-2、以磷作為配位原子之釕金屬錯合物染料 17
1-6-3、以矽原子替代碳原子所形成之雜環釕金屬錯合物 21
1-7、光異構釕金屬錯合物 24
1-8、研究動機 27
第二章、實驗部分 28
2-1、實驗藥品 28
2-2、產物之結構、簡稱及分子量 32
2-3、實驗步驟 37
2-3-1、Et2dcbpy 的合成 37
2-3-2、NSi的合成 38
2-3-3、NSiN的合成 39
2-3-4、PSi的合成 40
2-3-5、Pys的合成 42
2-3-6、Py-Br-EDOT-SR的合成 43
2-3-7、L23的合成 46
2-3-8、Ru-2Etdcbpy的合成 49
2-3-9、Ru-EtPys的合成 50
2-3-10、PC1的合成 52
2-3-11、HBC23的合成 54
2-4、儀器分析與樣品製備 57
2-4-1、核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 57
2-4-2、紫外光/可見光吸收譜儀 (Ultraviolet Visible spectrophotometer, UV/Vis Spectrophotometer) 59
2-4-3、電化學分析儀 (Electorchemical Analyzer) 60
2-4-4、聚焦微波化學反應系統 (CEM) 61
2-4-5、理論計算 62
第三章﹒結果與討論 63
3-1 染料合成途徑及結構鑑定 63
3-1-1、氮矽雙牙螯合基NSi與釕錯合之反應探討 63
3-1-2、氮矽三牙螯合基NSiN與釕錯合之反應探討 64
3-2、Density Functional Theory (DFT)理論計算 67
3-2-1、計算出不同配位原子與釕配位之鍵能 67
3-2-2、染料前置軌域分布 75
3-3光學性質 82
3-3-1、PC1的吸收圖及經轉換後的Tauc plot 83
3-3-2、HBC23的吸收圖及經轉換後的Tauc plot 85
3-4、電化學性質 86
3-4-1、PC1以方波伏安法測得之氧化電位 87
3-4-2、HBC23以方波伏安法測得之氧化電位 88
第四章﹒結論 90
附錄 91
參考文獻 101
參考文獻 (1) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 2005, 127 (48), 16835-16847.
(2) Newell, R.; Raimi, D.; Villanueva, S.; Prest, B. Global energy outlook 2021: Pathways from Paris. Resources for the Future, 2021, 8.
(3) Omer, A. M. Green energies and the environment. Renewable and sustainable energy reviews, 2008, 12 (7), 1789-1821.
(4) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25 (5), 676-677.
(5) Lin, H.; Yang, M.; Ru, X.; Wang, G.; Yin, S.; Peng, F.; Hong, C.; Qu, M.; Lu, J.; Fang, L. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 1-11.
(6) Green, M. A.; Dunlop, E. D.; Hohl‐Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar cell efficiency tables (Version 64). Progress in Photovoltaics: Research and Applications, 2022, 30 (7), 687-701.
(7) O′regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353 (6346), 737-740.
(8) Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature, 2023, 613 (7942), 60-65.
(9) Sharma, S.; Jain, K. K.; Sharma, A. Solar cells: in research and applications—a review. Materials Sciences and Applications, 2015, 6 (12), 1145.
(10) https://www.nrel.gov/pv/interactive-cell-efficiency.html (accessed.
(11) Sugathan, V.; John, E.; Sudhakar, K. Recent improvements in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 54-64.
(12) Ahmad, M. S.; Pandey, A. K.; Abd Rahim, N. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 2017, 77, 89-108.
(13) Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 1961, 32 (3), 510-519.
(14) Kalyanasundaram, K.; Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews, 1998, 177 (1), 347-414.
(15) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993, 115 (14), 6382-6390.
(16) Nazeeruddin, M. K.; Zakeeruddin, S.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M. Acid− Base equilibria of (2, 2 ‘-bipyridyl-4, 4 ‘-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry, 1999, 38 (26), 6298-6305.
(17) Nguyen, T.-D.; Lin, C.-H.; Mai, C.-L.; Wu, C.-G. Function of tetrabutylammonium on high-efficiency ruthenium sensitizers for both outdoor and indoor DSC application. ACS Omega, 2019, 4 (7), 11414-11423.
(18) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110 (11), 6595-6663.
(19) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B, 2003, 107 (34), 8981-8987.
(20) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano, 2009, 3 (10), 3103-3109.
(21) Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P. High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano, 2010, 4 (10), 6032-6038.
(22) Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine. The Journal of Physical Chemistry C 2009, 113 (15), 6290-6297.
(23) Bessho, T.; Yoneda, E.; Yum, J.-H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. New paradigm in molecular engineering of sensitizers for solar cell applications. Journal of the American Chemical Society, 2009, 131 (16), 5930-5934.
(24) Mauri, L.; Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Recent investigations on thiocyanate-free ruthenium (II) 2, 2′-bipyridyl complexes for dye-sensitized solar cells. Molecules 2021, 26 (24), 7638.
(25) Hussain, M.; Islam, A.; Bedja, I.; Gupta, R. K.; Han, L.; El-Shafei, A. A comparative study of Ru (II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? Physical Chemistry Chemical Physics 2014, 16 (28), 14874-14881.
(26) Kinoshita, T.; Dy, J. T.; Uchida, S.; Kubo, T.; Segawa, H. Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nature Photonics 2013, 7 (7), 535-539.
(27) Kinoshita, T.; Nonomura, K.; Joong Jeon, N.; Giordano, F.; Abate, A.; Uchida, S.; Kubo, T.; Seok, S. I.; Nazeeruddin, M. K.; Hagfeldt, A. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 2015, 6 (1), 8834.
(28) Kinoshita, T.; Otsubo, M.; Ono, T.; Segawa, H. Enhancement of near-infrared singlet–triplet absorption of Ru (II) sensitizers for improving conversion efficiency of solar cells. ACS Applied Energy Material,s 2021, 4 (7), 7052-7063.
(29) Stradiotto, M.; Fujdala, K. L.; Tilley, T. D. Iridium (III) complexes of the new tridentate bis (8-quinolyl) silyl (‘NSiN’) ligandElectronic supplementary information (ESI) available: synthetic and crystallographic details for 1–5. Chemical Communications, 2001, (13), 1200-1201.
(30) Sangtrirutnugul, P.; Stradiotto, M.; Tilley, T. D. Rhodium complexes containing a tridentate bis (8-quinolyl) methylsilyl ligand: Synthesis and reactivity. Organometallics, 2006, 25 (7), 1607-1617.
(31) Prieto-Pascual, U.; Alli, I. V.; Bustos, I.; Vitorica-Yrezabal, I. J.; Matxain, J. M.; Freixa, Z.; Huertos, M. A. Air-stable 14-electron rhodium (III) complexes bearing Si, N ligands as catalysts in hydrolysis of silanes. Organometallics, 2023, 42 (20), 2991-2998.
(32) Prieto-Pascual, U.; de Morentin, A. M.; Choquesillo-Lazarte, D.; Rodríguez-Diéguez, A.; Freixa, Z.; Huertos, M. A. Catalytic activation of remote alkenes through silyl-rhodium (III) complexes. Dalton Transactions, 2023, 52 (26), 9090-9096.
(33) Ren, S.; Xie, S.; Zheng, T.; Wang, Y.; Xu, S.; Xue, B.; Li, X.; Sun, H.; Fuhr, O.; Fenske, D. Synthesis of silyl iron hydride via Si–H activation and its dual catalytic application in the hydrosilylation of carbonyl compounds and dehydration of benzamides. Dalton Transactions, 2018, 47 (12), 4352-4359.
(34) Xu, S.; Zhang, P.; Li, X.; Xue, B.; Sun, H.; Fuhr, O.; Fenske, D. Synthesis of a silyl cobalt hydride and its catalytic performance in kumada coupling reactions. Chemistry–An Asian Journal 2017, 12 (11), 1234-1239.
(35) Prieto-Pascual, U.; Rodríguez-Diéguez, A.; Freixa, Z.; Huertos, M. A. Tailor-made synthesis of hydrosilanols, hydrosiloxanes, and silanediols catalyzed by di-silyl rhodium (III) and iridium (III) complexes. Inorganic Chemistry, 2023, 62 (7), 3095-3105.
(36) Wada, H.; Tobita, H.; Ogino, H. Intramolecular aromatic C− H bond activation by a silylene ligand in a methoxy-bridged bis (silylene)−ruthenium complex. Organometallics, 1997, 16 (18), 3870-3872.
(37) Takaoka, A.; Mendiratta, A.; Peters, J. C. E− H bond activation reactions (E= H, C, Si, Ge) at ruthenium: Terminal phosphides, silylenes, and germylenes. Organometallics, 2009, 28 (13), 3744-3753.
(38) McClure, B. A.; Rack, J. J. Two-color reversible switching in a photochromic ruthenium sulfoxide complex. Angew. Chem., Int. Ed, 2009, 48 (45), 8556-8558.
(39) Cordones, A. A.; Lee, J. H.; Hong, K.; Cho, H.; Garg, K.; Boggio-Pasqua, M.; Rack, J. J.; Huse, N.; Schoenlein, R. W.; Kim, T. K. Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex. Nature communications, 2018, 9 (1), 1989.
(40) Sundin, E.; Johansson, F.; Becerril, V. S.; Wallenstein, J.; Gasslander, A.; Mårtensson, J.; Abrahamsson, M. Two-colour photoswitching in photoresponsive inorganic thin films. Materials Advances, 2021, 2 (7), 2328-2333.
(41) Turlington, M. D.; Troian-Gautier, L.; Sampaio, R. N.; Beauvilliers, E. E.; Meyer, G. J. Control of Excited-State Supramolecular Assembly Leading to Halide Photorelease. Inorganic Chemistry, 2019, 58 (5), 3316-3328.
(42) Müller, V.; Ghorai, D.; Capdevila, L.; Messinis, A. M.; Ribas, X.; Ackermann, L. C–F activation for C (sp2)–C (sp3) cross-coupling by a secondary phosphine oxide (SPO)-nickel complex. Organic Letters, 2020, 22 (17), 7034-7040.
(43) Nguyen, T.-D.; Lin, C.-H.; Wu, C.-G. Effect of the CF3 substituents on the charge-transfer kinetics of high-efficiency cyclometalated ruthenium sensitizers. Inorganic Chemistry, 2017, 56 (1), 252-260.
(44) Nguyen, T.-D.; Lan, Y.-P.; Wu, C.-G. High-efficiency cycloruthenated sensitizers for dye-sensitized solar cells. Inorganic Chemistry, 2018, 57 (3), 1527-1534.
(45) Wang, Y.; Xu, S.; Chen, T.; Guo, H.; Liu, Q.; Ye, B.; Zhang, Z.; He, Z.; Cao, S. Synthesis and preliminary photovoltaic behavior study of a soluble polyimide containing ruthenium complexes. Polymer Chemistry, 2010, 1 (7), 1048-1055.
(46) Babij, N. R.; McCusker, E. O.; Whiteker, G. T.; Canturk, B.; Choy, N.; Creemer, L. C.; Amicis, C. V. D.; Hewlett, N. M.; Johnson, P. L.; Knobelsdorf, J. A. NMR chemical shifts of trace impurities: Industrially preferred solvents used in process and green chemistry. Organic Process Research & Development, 2016, 20 (3), 661-667.
(47) Chen, Z.; Jaramillo, T. F. The use of UV-visible spectroscopy to measure the band gap of a semiconductor. Department of Chemical Engineering, Stanford University Edited by Bruce Brunschwig, 2017, 9, 19.
(48) Hayes, B. L. Recent advances in microwave-assisted synthesis. Aldrichimica Acta 2004, 37 (2), 66-77.
(49) Sasaki, K. T., Yukio; Kobayashi, Katsumi. 光電変換素子、金属錯体色素、色素増感太陽電池用色素吸着液組成物、色素増感太陽電池およびその製造方法. Japan, 2013.
(50) Dean, J. A. Lange′s Handbook of Chemistry; McGRAW-HILL, INC, 1998.
(51) Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The Journal of Physical Chemistry Letters, 2018, 9, 6814-6817.
指導教授 吳春桂 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明