博碩士論文 111223078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.119.19.219
姓名 王妍惠(Yan-Hui Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於高效率反式錫鈣鈦礦太陽能電池之SnCo2O4尖晶石電洞傳輸層材料研究
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 近年來研究學者開發無機電洞傳輸層應用於錫鈣鈦礦太陽能電池(Tin Perovskite Solar Cells, TPSCs),因無機材料具有可調控的前置軌域能階、高的光穿透度與好的長時間穩定性等優點。本研究經由Sol-Gel法製備Cu2+摻雜的SnCo2O4(Cu-SCO)膜作為反式錫鈣鈦礦太陽能電池的電洞傳輸層。Cu-SCO膜在300-1000 nm的平均光穿透度(73%)與PEDOT:PSS膜(76%)的數值相近,且Cu-SCO的價帶(-5.47 eV)比PEDOT:PSS的價帶(-5.16 eV)更接近錫鈣鈦礦的價帶(-5.74 eV),減少電洞在元件中傳遞的能量損失,但Cu-SCO膜和錫鈣鈦礦層存在介面相容性不好的問題,導致組裝成元件的光電轉換效率僅有7.87%。因此在Cu-SCO膜和錫鈣鈦礦層間沉積一層兩性的高分子PTSN作為介面層,FTIR光譜顯示Cu-SCO+PTSN與SnI2+PTSN的thiophene C-S stretching 和amine C-N stretching,兩者皆往高波數位移,顯示PTSN疏水端thiophene硫上的孤對電子及親水鏈上胺基中之氮的孤對電子,都能與Cu-SCO膜和錫鈣鈦礦中配位未飽和的Sn2+作用。TRPL數據顯示,將錫鈣鈦礦沉積於Cu-SCO/PTSN膜上的載子生命週期(0.43 ns)比沉積在Cu-SCO膜上(0.63 ns)短,代表Cu-SCO/PTSN能較有效的萃取錫鈣鈦礦層的電洞。以Cu-SCO/PTSN及PEDOT:PSS作為電洞傳輸層所組裝之元件的最高效率分別為9.30%和8.74%。以Cu-SCO/PTSN作為電洞傳輸層所組裝之元件在未封裝且放置在氮氣手套箱中並在室內光照下3576小時,仍維持原效率的58%;在相同測試條件下,以PEDOT:PSS作為電洞傳輸層所組裝之元件放置2112小時後效率即掉為原效率的32%。
摘要(英) Inorganic hole transporting layers (HTL) for using in Tin Perovskite Solar Cells (TPSCs) have been widely studied in recent year because of inorganic materials have the advantages of controllable orbital energy levels, high light transmittance and good long-term stability amongst others. In this study, Cu2+ doped SnCo2O4 (Cu-SCO) film prepared by Sol-Gel method was used as the hole transporting layer of tin perovskite solar cells. The average light transmittance (73%) of the Cu-SCO film at 300-1000 nm is similar to that (76%) of the commonly used PEDOT:PSS HTL. The valence band edge (-5.47 eV) of Cu-SCO is closer to the valence band of tin perovskite (-5.74 eV) than that (-5.16 eV) of PEDOT:PSS film, which reduces the energy loss when the holes transport in cell. However, there is interfacial compatibility problem between the Cu-SCO film and the tin perovskite layer, results in the power conversion efficiency only 7.87% for the corresponding cell. Therefore, a layer of amphiphilic polymer PTSN was deposited between Cu-SCO film and tin perovskite layer as the interface layer. FTIR spectra showed that the thiophene C-S stretching and amine C-N stretching of Cu-SCO+PTSN and SnI2+PTSN both shifted to high wavenumber indicating that the lone pair electrons on the sulfur of thiophene and on the nitrogen in the amine group can interact with the unsaturated Sn2+ in the Cu-SCO film and tin perovskite. TRPL data shows that the carrier lifetime (0.43 ns) of tin perovskite deposited on the Cu-SCO/PTSN film is shorter than that (0.63 ns) of TPSK film coated on the Cu-SCO film, suggesting that Cu-SCO/PTSN can extract holes from the tin perovskite layer more efficient. The highest efficiency of devices base on Cu-SCO/PTSN and PEDOT:PSS HTLs were 9.30% and 8.74%, respectively. The device used Cu-SCO/PTSN HTL maintained 58% of the original efficiency when it was placed in the nitrogen filled glove box without encapsulating and under room light illumination for 3576 hours. Under the same test conditions, the cell based on PEDOT:PSS HTL drops to 32% of the original efficiency after being stored for 2112 hours.
關鍵字(中) ★ 鈣鈦礦
★ 電洞傳遞層
關鍵字(英) ★ perovskite
論文目次 第1章、 緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池(Perovskite solar cell) 1
1-2-1、 鈣鈦礦太陽能電池的架構 1
1-2-2、 反式鈣鈦礦太陽能電池的工作原理 3
1-2-3、 應用於反式錫鈣鈦礦太陽能電池之電洞傳輸層(HTL)性質 4
1-2-4、 無機電洞傳輸層材料的優點 5
1-3、 錫鈣鈦礦太陽能電池的研究歷程 6
1-3-1、 第一個以MASnI3作為吸收層組裝成錫鈣鈦礦太陽能電池之研究 6
1-3-2、 第一個以CsSnI3作為吸收層所組裝之錫鈣鈦礦太陽能電池之研究 7
1-3-3、 第一個以FASnI3作為吸收層並以SnF2作為添加劑的錫鈣鈦礦太陽能電池研究 9
1-3-4、 目前文獻中錫鈣鈦礦太陽能電池的最高光電轉換效率 11
1-4、 製備錫鈣鈦礦膜的方法 12
1-4-1、 一步驟合成法製備錫鈣鈦礦膜 13
1-4-2、 兩步驟合成法製備鈣鈦礦膜 13
1-4-3、 以一步驟反溶劑法合成製備鈣鈦礦膜 14
1-5、 以無機材料作為錫鈣鈦礦太陽能電池之電洞傳輸層 15
1-5-1、 以CuSCN作為反式錫鈣鈦礦太陽能電池之電洞傳輸層 15
1-5-2、 以NiOx作為反式錫鈣鈦礦太陽能電池之電洞傳輸層 16
1-5-3、 電漿處理SnOx作為反式錫鈣鈦礦太陽能電池之電洞傳輸層和鈣鈦礦保護層 16
1-6、 以尖晶石氧化物作為鉛鈣鈦礦太陽能電池之電洞傳輸層 17
1-6-1、 尖晶石氧化物作為電洞傳輸層應用於鈣鈦礦太陽能電池相關文獻 17
1-6-2、 以Cu2+和Li+共摻雜的NiCo2O4尖晶石作為反式鉛鈣鈦礦太陽能電池之電洞傳輸層 18
1-6-3、 以Cu2+摻雜的ZnCo2O4尖晶石作為反式鉛鈣鈦礦太陽能電池之電洞傳輸層 20
1-6-4、 SnCo2O4尖晶石具有高的導電度 21
1-7、 鈣鈦礦太陽能電池的介面修飾層 22
1-7-1、 Pyridine上氮或Thiophene上硫的孤對電子可填補鈣鈦礦層的表面缺陷 22
1-7-2、 5-AVA分子具雙官能基作為介面修飾層可同時與電洞傳輸層NiMgLiO和鉛鈣鈦礦層作用 23
1-8、 研究動機 25
第2章、 實驗部分 26
2-1、 實驗藥品及儀器設備 26
2-1-1、 藥品 26
2-1-2、 儀器設備 27
2-2、 反式鈣鈦礦太陽能電池組裝步驟 28
2-2-1、 藥品配製 28
2-2-2、 元件組裝步驟 29
2-3、 儀器原理及藥品製備 32
2-3-1、 太陽光模擬器的原理及光電轉換效率、暗電流與遲滯現象的量測(Solar Simulator, Enlitech SS-F5) 32
2-3-2、 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 34
2-3-3、 空間電荷限制電流 (Space Charge-Limited Current, SCLC)理論 34
2-3-4、 UPS紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 36
2-3-5、 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet-visible-NIR spectroscopy, HITACHI U-4100) 37
2-3-6、 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope(FE-SEM), Nova nano SEM 230) 37
2-3-7、 光致螢光及時間解析螢光光譜儀(Photoluminescence Spectrometer, Time-Resolved photoluminescence ,Uni think UniRAM) 38
2-3-8、 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer(FTIR), Jasco 4100) 39
2-3-9、 X-Ray 繞射光譜儀(X-Ray Diffractometer, XRD, BRUKER D8 Discover) 40
2-3-10、 接觸角量測儀(Contact angle, Grandhand Ctag01) 41
第3章、 結果與討論 43
3-1、 電洞傳輸層2 mol% Cu2+ doped SnCo2O4製備條件篩選 43
3-1-1、 在SnCo2O4膜摻雜金屬離子M (M=Cu2+/Mg2+/Fe2+/Li+)作為電洞傳輸層所組裝元件之光伏參數 43
3-1-2、 以不同濃度的SnCo2O4前驅溶液所製備膜作為電洞傳輸層組裝成元件之光伏表現 45
3-1-3、 在SnCo2O4膜摻雜不同量的Cu2+離子作為電洞傳輸層所組裝元件之光伏參數 46
3-1-4、 以不同轉速製備2 mol% Cu2+ doped SnCo2O4膜作為電洞傳輸層所組裝元件之光伏參數 48
3-1-5、 不同溫度加熱2 mol% Cu2+ doped SnCo2O4膜作為電洞傳輸層所組裝元件之光伏參數 49
3-2、 介面修飾層的選擇及製備條件篩選 51
3-2-1、 高分子PDTON與高分子PTSN作為介面修飾劑所組裝元件之光伏參數 51
3-2-2、 以不同濃度的PTSN(CB)溶液作為介面修飾層所組裝元件之光伏參數 53
3-3、 錫鈣鈦礦層的製備條件篩選 54
3-3-1、 在錫鈣鈦礦前驅溶液中加入甲基氯化銨(MACl)作為添加劑製備成錫鈣鈦礦吸收層所組裝元件之光伏參數 54
3-3-2、 錫鈣鈦礦前驅溶液以不同轉速成膜作為錫鈣鈦礦吸收層所組裝元件之光伏參數 56
3-4、 比較三種電洞傳輸層組裝成元件之光伏參數 59
3-5、 以三種不同電洞傳輸層所組裝之反式錫鈣鈦礦太陽能元件之遲滯因子 60
3-6、 三種電洞傳輸層所組裝之元件的IPCE表現 62
3-7、 三種電洞傳輸層所組裝之最高效率元件的最大功率點輸出 63
3-8、 三種電洞傳輸層所組裝之元件的暗電流 64
3-9、 三種電洞傳輸層所組裝之元件的長時間穩定測試 65
3-10、 Cu2+摻雜SnCo2O4膜的XRD圖 66
3-11、 三種電洞傳輸層的SEM表面形貌圖 66
3-12、 三種電洞傳輸層的UV-Vis穿透光譜圖及太陽能譜的光通量 67
3-13、 三種電洞傳輸層的UV-Vis吸收光譜圖及所對應Tauc plot 68
3-14、 三種電洞傳輸層及錫鈣鈦礦層之前置軌域能階 69
3-15、 三種電洞傳輸層與錫鈣鈦礦前驅液接觸角 71
3-16、 沉積在三種電洞傳輸層的鈣鈦礦層結晶度 72
3-17、 錫鈣鈦礦沉積在三種電洞傳輸層上的SEM表面形貌圖及剖面圖 73
3-18、 不同電洞傳輸層的電洞遷移率及沉積在不同電洞傳輸層上的錫鈣鈦礦缺陷密度 74
3-19、 沉積在不同電洞傳輸層上之錫鈣鈦礦膜的PL及TRPL光譜 78
3-20、 介面修飾層PTSN與電洞傳輸層Cu-SnCo2O4的作用 79
3-21、 介面修飾層PTSN與錫鈣鈦礦中SnI2的相互作用 81
第4章、 結論 83
參考文獻 84
附錄 87
參考文獻 1. Singh, R.; Singh, P. K.; Bhattacharya, B.; Rhee, H.-W., Review of current progress in inorganic hole-transport materials for perovskite solar cells. Applied Materials Today 2019, 14, 175-200.
2. Rajeswari, R.; Mrinalini, M.; Prasanthkumar, S.; Giribabu, L., Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. The Chemical Record 2017, 17 (7), 681-699.
3. Li, Y.; Ding, B.; Chu, Q.-Q.; Yang, G.-J.; Wang, M.; Li, C.-X.; Li, C.-J., Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports 2017, 7 (1), 46141.
4. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
5. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
6. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.-G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials 2016, 28 (42), 9333-9340.
7. Chen, J.; Luo, J.; Hou, E.; Song, P.; Li, Y.; Sun, C.; Feng, W.; Cheng, S.; Zhang, H.; Xie, L.; Tian, C.; Wei, Z., Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nature Photonics 2024, 18 (5), 464-470.
8. Zhu, Z.; Chueh, C. C.; Li, N.; Mao, C.; Jen, A. K., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv Mater 2018, 30 (6).
9. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
10. Cao, J.; Tai, Q.; You, P.; Tang, G.; Wang, T.; Wang, N.; Yan, F., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. Journal of Materials Chemistry A 2019, 7 (46), 26580-26585.
11. Wang, T.; Loi, H. L.; Cao, J.; Qin, Z.; Guan, Z.; Xu, Y.; Cheng, H.; Li, M. G.; Lee, C. S.; Lu, X.; Yan, F., High Open Circuit Voltage Over 1 V Achieved in Tin-Based Perovskite Solar Cells with a 2D/3D Vertical Heterojunction. Adv Sci (Weinh) 2022, 9 (18), e2200242.
12. Wang, L.; Chen, M.; Yang, S.; Uezono, N.; Miao, Q.; Kapil, G.; Baranwal, A. K.; Sanehira, Y.; Wang, D.; Liu, D.; Ma, T.; Ozawa, K.; Sakurai, T.; Zhang, Z.; Shen, Q.; Hayase, S., SnOx as Bottom Hole Extraction Layer and Top In Situ Protection Layer Yields over 14% Efficiency in Sn-Based Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10), 3703-3708.
13. Huang, Z.; Ouyang, D.; Shih, C.-J.; Yang, B.; Choy, W. C. H., Solution-Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials 2020, 10 (13), 1900903.
14. Lee, J. H.; Noh, Y. W.; Jin, I. S.; Park, S. H.; Jung, J. W., Efficient perovskite solar cells with negligible hysteresis achieved by sol–gel-driven spinel nickel cobalt oxide thin films as the hole transport layer. Journal of Materials Chemistry C 2019, 7 (24), 7288-7298.
15. Lee, J. H.; Jin, I. S.; Noh, Y. W.; Park, S. H.; Jung, J. W., A Solution-Processed Spinel CuCo2O4 as an Effective Hole Transport Layer for Efficient Perovskite Solar Cells with Negligible Hysteresis. ACS Sustainable Chemistry & Engineering 2019, 7 (21), 17661-17670.
16. Jheng, B.-R.; Chiu, P.-T.; Yang, S.-H.; Tong, Y.-L., Using ZnCo2O4 nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells. Scientific Reports 2022, 12 (1), 2921.
17. Zhang, Y.; Ge, J.; Mahmoudi, B.; Förster, S.; Syrowatka, F.; Maijenburg, A. W.; Scheer, R., Synthesis and Characterization of Spinel Cobaltite (Co3O4) Thin Films for Function as Hole Transport Materials in Organometallic Halide Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (4), 3755-3769.
18. Wang, S.; Wang, L.; Liu, C.; Shan, Y.; Li, F.; Sun, L., NiCo2O4 thin film prepared by electrochemical deposition as a hole-transport layer for efficient inverted perovskite solar cells. RSC Advances 2022, 12 (20), 12544-12551.
19. Ioakeimidis, A.; Papadas, I. T.; Tsikritzis, D.; Armatas, G. S.; Kennou, S.; Choulis, S. A., Enhanced photovoltaic performance of perovskite solar cells by Co-doped spinel nickel cobaltite hole transporting layer. APL Materials 2019, 7 (2), 021101.
20. Chiang, C.-H.; Chen, Y.-L.; Wu, C.-G., Sol-Gel Prepared Spinel HTLs for Assembling 20% Efficiency Perovskite Solar Cell in Air Without Using Anti-Solvent and Toxic Solvent. Small Methods 2023, 7 (10), 2300399.
21. Mahmood, Q.; Ul Haq, B.; Rashid, M.; Noor, N. A.; AlFaify, S.; Laref, A., First-principles study of magnetic and thermoelectric properties of SnFe2O4 and SnCo2O4 spinels. Journal of Solid State Chemistry 2020, 286, 121279.
22. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J., Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 2014, 8 (10), 9815-9821.
23. Zhang, Y.; Zhang, S.; Wu, S.; Chen, C.; Zhu, H.; Xiong, Z.; Chen, W.; Chen, R.; Fang, S.; Chen, W., Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces 2018, 5 (19), 1800645.
24. Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 2018, 49, 411-418.
25. Liu, C.; Tu, J.; Hu, X.; Huang, Z.; Meng, X.; Yang, J.; Duan, X.; Tan, L.; Li, Z.; Chen, Y., Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials 2019, 29 (18), 1808059.
26. Syed, A. M.; Iqbal, A. K.; Waheed, A. Y.; Khasan, S. K., Space Charge–Limited Current Model for Polymers. In Conducting Polymers, Faris, Y., Ed. IntechOpen: Rijeka, 2016; p Ch. 5.
27. Rutledge, S. A.; Helmy, A. S., Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics 2013, 114 (13), 133708.
28. Kuna, C. V. R.; Mohanty, B. N., Dielectric and Conductivity Properties of Some Wood Composites. International Journal of Engineering and Technologies 2016, 8, 51-60.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明