參考文獻 |
1. Singh, R.; Singh, P. K.; Bhattacharya, B.; Rhee, H.-W., Review of current progress in inorganic hole-transport materials for perovskite solar cells. Applied Materials Today 2019, 14, 175-200.
2. Rajeswari, R.; Mrinalini, M.; Prasanthkumar, S.; Giribabu, L., Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. The Chemical Record 2017, 17 (7), 681-699.
3. Li, Y.; Ding, B.; Chu, Q.-Q.; Yang, G.-J.; Wang, M.; Li, C.-X.; Li, C.-J., Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports 2017, 7 (1), 46141.
4. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
5. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
6. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.-G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials 2016, 28 (42), 9333-9340.
7. Chen, J.; Luo, J.; Hou, E.; Song, P.; Li, Y.; Sun, C.; Feng, W.; Cheng, S.; Zhang, H.; Xie, L.; Tian, C.; Wei, Z., Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives. Nature Photonics 2024, 18 (5), 464-470.
8. Zhu, Z.; Chueh, C. C.; Li, N.; Mao, C.; Jen, A. K., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv Mater 2018, 30 (6).
9. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
10. Cao, J.; Tai, Q.; You, P.; Tang, G.; Wang, T.; Wang, N.; Yan, F., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. Journal of Materials Chemistry A 2019, 7 (46), 26580-26585.
11. Wang, T.; Loi, H. L.; Cao, J.; Qin, Z.; Guan, Z.; Xu, Y.; Cheng, H.; Li, M. G.; Lee, C. S.; Lu, X.; Yan, F., High Open Circuit Voltage Over 1 V Achieved in Tin-Based Perovskite Solar Cells with a 2D/3D Vertical Heterojunction. Adv Sci (Weinh) 2022, 9 (18), e2200242.
12. Wang, L.; Chen, M.; Yang, S.; Uezono, N.; Miao, Q.; Kapil, G.; Baranwal, A. K.; Sanehira, Y.; Wang, D.; Liu, D.; Ma, T.; Ozawa, K.; Sakurai, T.; Zhang, Z.; Shen, Q.; Hayase, S., SnOx as Bottom Hole Extraction Layer and Top In Situ Protection Layer Yields over 14% Efficiency in Sn-Based Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10), 3703-3708.
13. Huang, Z.; Ouyang, D.; Shih, C.-J.; Yang, B.; Choy, W. C. H., Solution-Processed Ternary Oxides as Carrier Transport/Injection Layers in Optoelectronics. Advanced Energy Materials 2020, 10 (13), 1900903.
14. Lee, J. H.; Noh, Y. W.; Jin, I. S.; Park, S. H.; Jung, J. W., Efficient perovskite solar cells with negligible hysteresis achieved by sol–gel-driven spinel nickel cobalt oxide thin films as the hole transport layer. Journal of Materials Chemistry C 2019, 7 (24), 7288-7298.
15. Lee, J. H.; Jin, I. S.; Noh, Y. W.; Park, S. H.; Jung, J. W., A Solution-Processed Spinel CuCo2O4 as an Effective Hole Transport Layer for Efficient Perovskite Solar Cells with Negligible Hysteresis. ACS Sustainable Chemistry & Engineering 2019, 7 (21), 17661-17670.
16. Jheng, B.-R.; Chiu, P.-T.; Yang, S.-H.; Tong, Y.-L., Using ZnCo2O4 nanoparticles as the hole transport layer to improve long term stability of perovskite solar cells. Scientific Reports 2022, 12 (1), 2921.
17. Zhang, Y.; Ge, J.; Mahmoudi, B.; Förster, S.; Syrowatka, F.; Maijenburg, A. W.; Scheer, R., Synthesis and Characterization of Spinel Cobaltite (Co3O4) Thin Films for Function as Hole Transport Materials in Organometallic Halide Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (4), 3755-3769.
18. Wang, S.; Wang, L.; Liu, C.; Shan, Y.; Li, F.; Sun, L., NiCo2O4 thin film prepared by electrochemical deposition as a hole-transport layer for efficient inverted perovskite solar cells. RSC Advances 2022, 12 (20), 12544-12551.
19. Ioakeimidis, A.; Papadas, I. T.; Tsikritzis, D.; Armatas, G. S.; Kennou, S.; Choulis, S. A., Enhanced photovoltaic performance of perovskite solar cells by Co-doped spinel nickel cobaltite hole transporting layer. APL Materials 2019, 7 (2), 021101.
20. Chiang, C.-H.; Chen, Y.-L.; Wu, C.-G., Sol-Gel Prepared Spinel HTLs for Assembling 20% Efficiency Perovskite Solar Cell in Air Without Using Anti-Solvent and Toxic Solvent. Small Methods 2023, 7 (10), 2300399.
21. Mahmood, Q.; Ul Haq, B.; Rashid, M.; Noor, N. A.; AlFaify, S.; Laref, A., First-principles study of magnetic and thermoelectric properties of SnFe2O4 and SnCo2O4 spinels. Journal of Solid State Chemistry 2020, 286, 121279.
22. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J., Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 2014, 8 (10), 9815-9821.
23. Zhang, Y.; Zhang, S.; Wu, S.; Chen, C.; Zhu, H.; Xiong, Z.; Chen, W.; Chen, R.; Fang, S.; Chen, W., Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces 2018, 5 (19), 1800645.
24. Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 2018, 49, 411-418.
25. Liu, C.; Tu, J.; Hu, X.; Huang, Z.; Meng, X.; Yang, J.; Duan, X.; Tan, L.; Li, Z.; Chen, Y., Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials 2019, 29 (18), 1808059.
26. Syed, A. M.; Iqbal, A. K.; Waheed, A. Y.; Khasan, S. K., Space Charge–Limited Current Model for Polymers. In Conducting Polymers, Faris, Y., Ed. IntechOpen: Rijeka, 2016; p Ch. 5.
27. Rutledge, S. A.; Helmy, A. S., Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics 2013, 114 (13), 133708.
28. Kuna, C. V. R.; Mohanty, B. N., Dielectric and Conductivity Properties of Some Wood Composites. International Journal of Engineering and Technologies 2016, 8, 51-60. |