參考文獻 |
1. Hunter, C. A.; Sanders, J. K. M. The nature of pi-pi interactions. J. Am. Chem. Soc., 1990, 112 (14), 5525-5534.
2. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions. J. Chem. Soc., Perkin Trans. 2., 2001, (5), 651-669.
3. Martinez, C. R.; Iverson, B. L. Rethinking the term "π-stacking". Chem. Sci., 2012, 3 (7), 2191-2201.
4. Carter-Fenk, K.; Herbert, J. M. Reinterpreting π-stacking. Phys. Chem. Chem. Phys., 2020, 22 (43), 24870-24886.
5. Krenske, E. H.; Houk, K. Aromatic interactions as control elements in stereoselective organic reactions. Acc. Chem. Res., 2013, 46 (4), 979-989.
6. Chen, Z.; Lohr, A.; Saha-Möller, C. R.; Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev., 2009, 38 (2), 564-584.
7. Liu, Y.; Zhan, G. Z.; Zhong, X. H.; Yu, Y. F.; Gan, W. J. Effect of π-π stacking on the self-assembly of azomethine-type rod-coil liquid crystals. Liquid Crystals, 2011, 38 (8), 995-1006.
8. Kool, E. T.; Morales, J. C.; Guckian, K. M. Mimicking the structure and function of DNA: insights into DNA stability and replication. Angew. Chem., Int. Ed. Engl., 2000, 39 (6), 990-1009
9. Burley, S. K.; Petsko, G. A. Weakly polar interactions in proteins. Adv. Protein Chem., 1988, 39, 125-189.
10. Xie, L. S.; Alexandrov, E. V.; Skorupskii, G.; Proserpio, D. M.; Dinca, M. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks. Chem. Sci., 2019, 10 (37), 8558-8565.
11. Warman, J. M.; de Haas, M. P.; Dicker, G.; Grozema, F. C.; Piris, J.; Debije, M. G. Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity:: π-bond-conjugated polymers versus π-π-stacked discotics. Chem. Mater., 2004, 16 (23), 4600-4609.
12. Liu, G. R.; Wei, S. H.; Zhang, C. Y. Review of the intermolecular interactions in energetic molecular cocrystals. Cryst. Growth Des., 2020, 20 (10), 7065-7079.
13. Fa, B.; Cong, S.; Wang, J. π-π stacking mediated cooperative mechanism for human cytochrome P450 3A4. Molecules, 2015, 20 (5), 7558-7573.
14. Hoffmann, R. Molecular Beauty. J. Aesthet. Art Critic., 1990, 48 (3), 191-204.
15. Voegtle, F.; Neumann, P. The synthesis of [2.2] phanes. Synthesis, 1973, 1973 (02), 85-103.
16. Gulevskaya, A. V.; Ermolenko, E. A. 1, 8‐diarylnaphthalenes: synthesis, properties, and applications. Eur. J. Org. Chem., 2022, 2022 (48) Pages e202201192.
17. Gleiter, R.; Hopf, H. Modern cyclophane chemistry; John Wiley & Sons, 2006.
18. Brown, C. J.; Farthing, A. Preparation and structure of di-p-xylylene. Nature, 1949, 164 (4178), 915-916.
19. Nakazaki, M.; Yamamoto, K.; Tanaka, S.; Kametani, H. Syntheses of the optically active multilayered [2.2] paracyclophanes with known absolute configurations. J. Org. Chem., 1977, 42 (2), 287-291.
20. Kawashima, T.; Otsubo, T.; Sakata, Y.; Misumi, S. Syntheses of three [2.2] pyrenophanes as an excimer model. Tetrahedron Lett., 1978, 19 (51), 5115-5118.
21. Umemoto, T.; Satani, S.; Sakata, Y.; Misumi, S. Layered compounds. xxix.[2.2](2, 7) pyrenophane and its 1, 13-diene. Tetrahedron Lett., 1975, 16 (36), 3159-3162.
22. Staab, H. A.; Riegler, N.; Diederich, F.; Krieger, C.; Schweitzer, D. [3.3]‐and [4.4](2, 7) pyrenophanes as excimer models: synthesis, molecular structure, and spectroscopic properties. Chem. Ber./Recl., 1984, 117 (1), 246-259.
23. Luhowy, R.; Keehn, P. M. Cyclophanes .9. anti-[2.2](2,6)azulenophane - synthesis and charge-transfer interaction. J. Am. Chem. Soc., 1977, 99 (11), 3797-3805.
24. Biswas, S.; Tabasi, Z. A.; Dawe, L. N.; Zhao, Y.; Bodwell, G. J. Synthesis of anti-[1](1,6)naphthaleno[1](1,6)naphthalenophane by double contractive annulation of [2.2]paracyclophane. Org. Lett., 2022, 24 (28), 5009-5013.
25. House, H. O.; Magin, R. W.; Thompson, H. W. The Synthesis of 1, 8-diphenylnaphthalene. J. Org. Chem., 1963, 28 (9), 2403-2406.
26. Ibuki, E.; Ozasa, S.; Fujioka, Y.; Mizutani, H. Interconversible cis and trans rotational isomers of 1, 8-di (1-naphthyl) naphthalene. Chem. Pharm. Bull., 1981, 29 (7), 2103-2106.
27. Wahl, P.; Krieger, C.; Schweitzer, D.; Staab, H. A. 1,8-dipyrenylnaphthalenes - syntheses, molecular-structure, and spectroscopic properties. Chem. Ber./Recl., 1984, 117 (1), 260-276.
28. Uehara, K.; Kano, H.; Matsuo, K.; Hayashi, H.; Fujiki, M.; Yamada, H.; Aratani, N. Mirror-image cofacial coronene dimers characterized by CD and CPL spectroscopy: a twisted bilayer nanographene. ChemPhotoChem., 2021, 5 (11), 974-978.
29. Rathore, R.; Abdelwahed, S. H.; Guzei, I. A. Synthesis, structure, and evaluation of the effect of multiple stacking on the electron-donor properties of π-stacked polyfluorenes. J. Am. Chem. Soc., 2003, 125 (29), 8712-8713.
30. Watson, M. D.; Jäckel, F.; Severin, N.; Rabe, J. P.; Müllen, K. A hexa-p eri-hexabenzocoronene cyclophane: an addition to the toolbox for molecular electronics. J. Am. Chem. Soc., 2004, 126 (5), 1402-1407.
31. Evans, P. J.; Ouyang, J.; Favereau, L.; Crassous, J.; Fernandez, I.; Perles, J.; Martin, N. Synthesis of a helical bilayer nanographene. Angew. Chem. Int. Ed. Engl., 2018, 57 (23), 6774-6779.
32. Izquierdo-Garcia, P.; Fernandez-Garcia, J. M.; Medina Rivero, S.; Samal, M.; Rybacek, J.; Bednarova, L.; Ramirez-Barroso, S.; Ramirez, F. J.; Rodriguez, R.; Perles, J.; et al. Helical bilayer nanographenes: impact of the helicene length on the structural, electrochemical, photophysical, and chiroptical properties. J. Am. Chem. Soc., 2023, 145 (21), 11599-11610.
33. Ju, Y. Y.; Chai, L.; Li, K.; Xing, J. F.; Ma, X. H.; Qiu, Z. L.; Zhao, X. J.; Zhu, J.; Tan, Y. Z. Helical trilayer nanographenes with tunable interlayer overlaps. J. Am. Chem. Soc., 2023, 145 (5), 2815-2821.
34. Genovese, S.; Epifano, F.; Marcotullio, M. C.; Pelucchini, C.; Curini, M. An alternative quinoline synthesis by via Friedländer reaction catalyzed by Yb(OTf)3. Tetrahedron Lett., 2011, 52 (27), 3474-3477.
35. De, S. K.; Gibbs, R. A. A mild and efficient one-step synthesis of quinolines. Tetrahedron Lett., 2005, 46 (10), 1647-1649.
36. Marco-Contelles, J.; Perez-Mayoral, E.; Samadi, A.; Carreiras Mdo, C.; Soriano, E. Recent advances in the Friedlander reaction. Chem. Rev., 2009, 109 (6), 2652-2671.
37. Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev., 2008, 37 (12), 2593-2608.
38. Davankov, V. Separation of enantiomeric compounds using chiral HPLC systems. A brief review of general principles, advances, and development trends. Chromatographia, 1989, 27, 475-482.
39. Berova, N.; Nakanishi, K.; Woody, R. W. Circular dichroism: principles and applications; John Wiley & Sons, 2000. |