博碩士論文 111223066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.191.129.241
姓名 歐書瑋(Su-Wei Ou)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用灣區雙喹啉做為架橋基建構多層苯基堆疊之梯狀化合物
(Using Bay Area bisquinoline as a bridging unit to construct ladder compounds with multilayer phenyl stacking)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文研究方法為利用鄰位胺基之苯酮作為起始物與1,4-環己二酮透過Friedländer 縮和反應形成雙喹啉,並以此做為架橋基將多層苯基堆疊的梯狀化合物。芳香堆疊結構造成許多有趣的物理性質微調,光學性質,又或者整個堆疊結構上的穩定,又或是自組裝的行為,都可以藉由π-π作用力所致的芳香堆疊結構產生;撇開科學領域,多層芳香堆疊對稱結構頗能啟發人們的美感,以上都是合成出多層芳香堆疊結構的動機。

本文透過兩種主要合成策略去解決寡體合成上的難題,分別為利用末端單元 (terminal unit) 與當量數控制去解決,利用這兩種方法以建構出本篇計畫所需之建構單元,並於研究中發現此芳香堆疊結構系列之化合物皆出現不溶於多數溶劑且怕光的情形。

最後成功合成出具有多層苯基堆疊且具對稱美感之化合物,其特殊的性質在研究上值得有更多的探討。
摘要(英) This paper′s research methodology involves using ortho-amino ketones as starting materials to react with 1,4-cyclohexanedione via the Friedländer condensation reaction to form bisquinoline. This bisquinoline is then used as a bridging unit to construct ladder-like compounds with multilayered phenyl stacking. The aromatic stacking structure leads to many interesting tunable physical properties, optical properties, stability of the entire stacked structure, or self-assembly behavior, all of which arise from the aromatic stacking structure induced by π-π interactions. Beyond the scientific realm, the multilayered aromatic stacking symmetric structures can inspire people′s sense of aesthetics, providing motivation for synthesizing such structures.

This paper addresses the challenges in oligomer synthesis through two main synthetic strategies: using terminal units and controlling stoichiometry. These methods are employed to construct the necessary building blocks for this project. During the research, it was found that this series of aromatic stacking compounds are insoluble in most solvents and are photosensitive.

Ultimately, compounds with multilayered phenyl stacking and symmetrical aesthetics were successfully synthesized, and their unique properties are worthy of further investigation.
關鍵字(中) ★ 雙喹啉 關鍵字(英)
論文目次 摘要 i
abstract ii
圖目錄 vi
表目錄 xi
附圖目錄 xii
第一章、緒論 1
1-1前言與研究動機 1
1-2芳香堆疊結構文獻回顧 4
1-3 寡體合成之探討 16
1-4 具體研究方法 18
第二章、結果與討論 23
2-1 逆合成分析 23
2-1-1苯基堆疊結構之逆合成分析 23
2-1-2重要建構單元之逆合成分析 26
2-2催化劑、溶劑、溫度測試 32
2-3多層苯基堆疊之梯狀化合物的合成 34
2-3-1三層苯基堆疊結構之合成 34
2-3-2四層苯基堆疊結構之合成 37
2-3-3五層苯基堆疊結構之合成 39
2-3-4六層苯基堆疊結構之合成 41
2-3-5間位苯基堆疊結構之合成 43
2-4多層苯基堆疊結構確定與探討 45
2-4-1三層苯基堆疊化合物之探討 45
2-4-2四層苯基堆疊化合物之探討 50
2-4-3五層苯基堆疊化合物之探討 55
2-4-4六層苯基堆疊化合物之探討 59
2-4-3高效能液相層析法之探討 63
結論 67
第三章、實驗部分 69
3-1儀器設備 69
3-2實驗操作 71
參考文獻 96
參考文獻 1. Hunter, C. A.; Sanders, J. K. M. The nature of pi-pi interactions. J. Am. Chem. Soc., 1990, 112 (14), 5525-5534.
2. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions. J. Chem. Soc., Perkin Trans. 2., 2001, (5), 651-669.
3. Martinez, C. R.; Iverson, B. L. Rethinking the term "π-stacking". Chem. Sci., 2012, 3 (7), 2191-2201.
4. Carter-Fenk, K.; Herbert, J. M. Reinterpreting π-stacking. Phys. Chem. Chem. Phys., 2020, 22 (43), 24870-24886.
5. Krenske, E. H.; Houk, K. Aromatic interactions as control elements in stereoselective organic reactions. Acc. Chem. Res., 2013, 46 (4), 979-989.
6. Chen, Z.; Lohr, A.; Saha-Möller, C. R.; Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev., 2009, 38 (2), 564-584.
7. Liu, Y.; Zhan, G. Z.; Zhong, X. H.; Yu, Y. F.; Gan, W. J. Effect of π-π stacking on the self-assembly of azomethine-type rod-coil liquid crystals. Liquid Crystals, 2011, 38 (8), 995-1006.
8. Kool, E. T.; Morales, J. C.; Guckian, K. M. Mimicking the structure and function of DNA: insights into DNA stability and replication. Angew. Chem., Int. Ed. Engl., 2000, 39 (6), 990-1009
9. Burley, S. K.; Petsko, G. A. Weakly polar interactions in proteins. Adv. Protein Chem., 1988, 39, 125-189.
10. Xie, L. S.; Alexandrov, E. V.; Skorupskii, G.; Proserpio, D. M.; Dinca, M. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks. Chem. Sci., 2019, 10 (37), 8558-8565.
11. Warman, J. M.; de Haas, M. P.; Dicker, G.; Grozema, F. C.; Piris, J.; Debije, M. G. Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity:: π-bond-conjugated polymers versus π-π-stacked discotics. Chem. Mater., 2004, 16 (23), 4600-4609.
12. Liu, G. R.; Wei, S. H.; Zhang, C. Y. Review of the intermolecular interactions in energetic molecular cocrystals. Cryst. Growth Des., 2020, 20 (10), 7065-7079.
13. Fa, B.; Cong, S.; Wang, J. π-π stacking mediated cooperative mechanism for human cytochrome P450 3A4. Molecules, 2015, 20 (5), 7558-7573.
14. Hoffmann, R. Molecular Beauty. J. Aesthet. Art Critic., 1990, 48 (3), 191-204.
15. Voegtle, F.; Neumann, P. The synthesis of [2.2] phanes. Synthesis, 1973, 1973 (02), 85-103.
16. Gulevskaya, A. V.; Ermolenko, E. A. 1, 8‐diarylnaphthalenes: synthesis, properties, and applications. Eur. J. Org. Chem., 2022, 2022 (48) Pages e202201192.
17. Gleiter, R.; Hopf, H. Modern cyclophane chemistry; John Wiley & Sons, 2006.
18. Brown, C. J.; Farthing, A. Preparation and structure of di-p-xylylene. Nature, 1949, 164 (4178), 915-916.
19. Nakazaki, M.; Yamamoto, K.; Tanaka, S.; Kametani, H. Syntheses of the optically active multilayered [2.2] paracyclophanes with known absolute configurations. J. Org. Chem., 1977, 42 (2), 287-291.
20. Kawashima, T.; Otsubo, T.; Sakata, Y.; Misumi, S. Syntheses of three [2.2] pyrenophanes as an excimer model. Tetrahedron Lett., 1978, 19 (51), 5115-5118.
21. Umemoto, T.; Satani, S.; Sakata, Y.; Misumi, S. Layered compounds. xxix.[2.2](2, 7) pyrenophane and its 1, 13-diene. Tetrahedron Lett., 1975, 16 (36), 3159-3162.
22. Staab, H. A.; Riegler, N.; Diederich, F.; Krieger, C.; Schweitzer, D. [3.3]‐and [4.4](2, 7) pyrenophanes as excimer models: synthesis, molecular structure, and spectroscopic properties. Chem. Ber./Recl., 1984, 117 (1), 246-259.
23. Luhowy, R.; Keehn, P. M. Cyclophanes .9. anti-[2.2](2,6)azulenophane - synthesis and charge-transfer interaction. J. Am. Chem. Soc., 1977, 99 (11), 3797-3805.
24. Biswas, S.; Tabasi, Z. A.; Dawe, L. N.; Zhao, Y.; Bodwell, G. J. Synthesis of anti-[1](1,6)naphthaleno[1](1,6)naphthalenophane by double contractive annulation of [2.2]paracyclophane. Org. Lett., 2022, 24 (28), 5009-5013.
25. House, H. O.; Magin, R. W.; Thompson, H. W. The Synthesis of 1, 8-diphenylnaphthalene. J. Org. Chem., 1963, 28 (9), 2403-2406.
26. Ibuki, E.; Ozasa, S.; Fujioka, Y.; Mizutani, H. Interconversible cis and trans rotational isomers of 1, 8-di (1-naphthyl) naphthalene. Chem. Pharm. Bull., 1981, 29 (7), 2103-2106.
27. Wahl, P.; Krieger, C.; Schweitzer, D.; Staab, H. A. 1,8-dipyrenylnaphthalenes - syntheses, molecular-structure, and spectroscopic properties. Chem. Ber./Recl., 1984, 117 (1), 260-276.
28. Uehara, K.; Kano, H.; Matsuo, K.; Hayashi, H.; Fujiki, M.; Yamada, H.; Aratani, N. Mirror-image cofacial coronene dimers characterized by CD and CPL spectroscopy: a twisted bilayer nanographene. ChemPhotoChem., 2021, 5 (11), 974-978.
29. Rathore, R.; Abdelwahed, S. H.; Guzei, I. A. Synthesis, structure, and evaluation of the effect of multiple stacking on the electron-donor properties of π-stacked polyfluorenes. J. Am. Chem. Soc., 2003, 125 (29), 8712-8713.
30. Watson, M. D.; Jäckel, F.; Severin, N.; Rabe, J. P.; Müllen, K. A hexa-p eri-hexabenzocoronene cyclophane: an addition to the toolbox for molecular electronics. J. Am. Chem. Soc., 2004, 126 (5), 1402-1407.
31. Evans, P. J.; Ouyang, J.; Favereau, L.; Crassous, J.; Fernandez, I.; Perles, J.; Martin, N. Synthesis of a helical bilayer nanographene. Angew. Chem. Int. Ed. Engl., 2018, 57 (23), 6774-6779.
32. Izquierdo-Garcia, P.; Fernandez-Garcia, J. M.; Medina Rivero, S.; Samal, M.; Rybacek, J.; Bednarova, L.; Ramirez-Barroso, S.; Ramirez, F. J.; Rodriguez, R.; Perles, J.; et al. Helical bilayer nanographenes: impact of the helicene length on the structural, electrochemical, photophysical, and chiroptical properties. J. Am. Chem. Soc., 2023, 145 (21), 11599-11610.
33. Ju, Y. Y.; Chai, L.; Li, K.; Xing, J. F.; Ma, X. H.; Qiu, Z. L.; Zhao, X. J.; Zhu, J.; Tan, Y. Z. Helical trilayer nanographenes with tunable interlayer overlaps. J. Am. Chem. Soc., 2023, 145 (5), 2815-2821.
34. Genovese, S.; Epifano, F.; Marcotullio, M. C.; Pelucchini, C.; Curini, M. An alternative quinoline synthesis by via Friedländer reaction catalyzed by Yb(OTf)3. Tetrahedron Lett., 2011, 52 (27), 3474-3477.
35. De, S. K.; Gibbs, R. A. A mild and efficient one-step synthesis of quinolines. Tetrahedron Lett., 2005, 46 (10), 1647-1649.
36. Marco-Contelles, J.; Perez-Mayoral, E.; Samadi, A.; Carreiras Mdo, C.; Soriano, E. Recent advances in the Friedlander reaction. Chem. Rev., 2009, 109 (6), 2652-2671.
37. Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev., 2008, 37 (12), 2593-2608.
38. Davankov, V. Separation of enantiomeric compounds using chiral HPLC systems. A brief review of general principles, advances, and development trends. Chromatographia, 1989, 27, 475-482.
39. Berova, N.; Nakanishi, K.; Woody, R. W. Circular dichroism: principles and applications; John Wiley & Sons, 2000.
指導教授 林質修 侯敦仁(Chih-Hsiu Lin Duen-Ren Hou) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明