參考文獻 |
(1) Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
(2) Liu, K. Fluorescent Probes Based on Metal and Aggregation-Induced Emission Organic Molecule Complexes for Bioimaging and Sensing Applications. Applied Science and Innovative Research 2023, 7 (2), 114.
(3) Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
(4) Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). 2013, 85 (8), 1715-1724.
(5) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem Rev 2012, 112 (2), 782-835.
(6) Li, B.; Wen, H.-M.; Zhou, W.; Chen, B. Porous Metal–Organic Frameworks for Gas Storage and Separation: What, How, and Why? The Journal of Physical Chemistry Letters 2014, 5 (20), 3468-3479.
(7) Zhao, Z.; Ma, X.; Kasik, A.; Li, Z.; Lin, Y. S. Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research 2013, 52 (3), 1102-1108.
(8) Li, S.; Chen, Y.; Pei, X.; Zhang, S.; Feng, X.; Zhou, J.; Wang, B. Water Purification: Adsorption over Metal-Organic Frameworks. Chinese Journal of Chemistry 2016, 34 (2), 175-185.
(9) Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews 2018, 47 (22), 8134-8172, 10.1039/C8CS00256H.
(10) Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews 2017, 46 (1), 126-157, 10.1039/C6CS00250A.
(11) Yang, Q.; Xu, Q.; Jiang, H.-L. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews 2017, 46 (15), 4774-4808, 10.1039/C6CS00724D.
(12) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
(13) Zhou, J.; Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews 2017, 46 (22), 6927-6945, 10.1039/C7CS00283A.
(14) Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2 (2), 100027.
(15) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem Rev 2012, 112 (2), 1105-1125.
(16) Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
(17) Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
(18) Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
(19) Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330, 10.1039/C0DT00708K.
(20) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
(21) Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214, 10.1039/B513750K.
(22) Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun (Camb) 2008, (31), 3642-3644.
(23) Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew Chem Int Ed Engl 2014, 53 (2), 429-433.
(24) Li, A.-L.; Ke, F.; Qiu, L.-G.; Jiang, X.; Wang, Y.-M.; Tian, X.-Y. Controllable synthesis of metal–organic framework hollow nanospheres by a versatile step-by-step assembly strategy. CrystEngComm 2013, 15 (18), 3554-3559, 10.1039/C2CE26636A.
(25) Kim, H.; Lah, M. S. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Transactions 2017, 46 (19), 6146-6158, 10.1039/C7DT00389G.
(26) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
(27) Wu, H.; Zhou, W.; Yildirim, T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J Am Chem Soc 2007, 129 (17), 5314-5315.
(28) Pan, Y.; Lai, Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 2011, 47 (37), 10275-10277, 10.1039/C1CC14051E.
(29) Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K. Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
(30) Morabito, J. V.; Chou, L.-Y.; Li, Z.; Manna, C. M.; Petroff, C. A.; Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C.-K. Molecular Encapsulation beyond the Aperture Size Limit through Dissociative Linker Exchange in Metal–Organic Framework Crystals. Journal of the American Chemical Society 2014, 136 (36), 12540-12543.
(31) Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl 2006, 45 (10), 1557-1559.
(32) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
(33) Bahos, F. A.; Sainz-Vidal, A.; Sánchez-Pérez, C.; Saniger, J. M.; Gràcia, I.; Saniger-Alba, M. M.; Matatagui, D. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors 2019, 9 (1), 4.
(34) Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Y. Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nature Communications 2021, 12 (1), 4483.
(35) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851.
(36) Yitong, H.; Min, L.; Keyan, L.; Yi, Z.; Guoliang, Z.; Zongchao, Z.; Xinwen, G. Preparation and Application of High Stability Metal-Organic Framework UiO-66. Chinese Journal of Applied Chemistry 2016, 33, 367-378.
(37) Winarta, J.; Shan, B.; McIntyre, S. M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Crystal Growth & Design 2020, 20 (2), 1347-1362.
(38) Ying, P.; Yu, J.; Su, W. Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis & Catalysis 2021, 363 (5), 1246-1271.
(39) Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: an update. J Chem Biol 2013, 6 (4), 185-205.
(40) Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.; Nadda, A. K.; Stevanato, R.; Bilal, M.; Iqbal, H. M. N. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 2022, 45 (2), 237-256.
(41) Datta, S.; Christena, L. R.; Rajaram, Y. R. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
(42) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev 2017, 46 (11), 3386-3401.
(43) Halliwell, B.; Gutteridge, J. M. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995, 18 (1), 125-126.
(44) Fita, I.; Rossmann, M. G. The NADPH binding site on beef liver catalase. Proceedings of the National Academy of Sciences 1985, 82 (6), 1604-1608.
(45) Chance, B. EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. Journal of Biological Chemistry 1952, 194 (2), 471-481.
(46) Chen, S.-Y.; Lo, W.-S.; Huang, Y.-D.; Si, X.; Liao, F.-S.; Lin, S.-W.; Williams, B. P.; Sun, T.-Q.; Lin, H.-W.; An, Y.; et al. Probing Interactions between Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure. Nano Letters 2020, 20 (9), 6630-6635.
(47) Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K. Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
(48) Das, A.; Mukhopadhyay, C. Urea-Mediated Protein Denaturation: A Consensus View. The Journal of Physical Chemistry B 2009, 113 (38), 12816-12824.
(49) Lam, P. K.; Vo, T. H.; Chen, J.-H.; Lin, S.-W.; Kuo, C.-L.; Liao, J.-J.; Chen, K.-Y.; Huang, S.-R.; Li, D.; Chang, Y.-H.; et al. A green and ultrafast one-pot mechanochemical approach for efficient biocatalyst encapsulation in MOFs: insights from experiments and computation. Journal of Materials Chemistry A 2023, 11 (45), 24678-24685, 10.1039/D3TA05228A.
(50) Liang, W.; Xu, H.; Carraro, F.; Maddigan, N. K.; Li, Q.; Bell, S. G.; Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H.; et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. Journal of the American Chemical Society 2019, 141 (6), 2348-2355.
(51) Zhao, X.; Shaw, L. Modeling and Analysis of High-Energy Ball Milling Through Attritors. Metallurgical and Materials Transactions A 2017, 48 (9), 4324-4333.
(52) Daraio, D.; Villoria, J.; Ingram, A.; Alexiadis, A.; Stitt, E. H.; Munnoch, A. L.; Marigo, M. Using Discrete Element method (DEM) simulations to reveal the differences in the γ-Al2O3 to α-Al2O3 mechanically induced phase transformation between a planetary ball mill and an attritor mill. Minerals Engineering 2020, 155, 106374.
(53) Hrininh, K.; Hordeichuk, R.; Gubenia, O. Comparative analysis of equipment and research the superfine grinding process of titanium dioxide and quinacridone red suspensions in the bead mill. Ukrainian Journal of Food Science 2018, 6, 82-94.
(54) Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering; 2008.
(55) Guan, S.; Hao, L.; Lu, Y. A Review on the Modification Strategies of TiO2 Photocatalyst Coatings. 2021, 2, 30-50.
(56) Lu, Y.; Guan, S.; Hao, L.; Yoshida, H. Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application. Coatings 2015, 5 (3), 425-464.
(57) Bragg, W. H.; Bragg, W. L. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
(58) Kudryavtsev, A. V.; Guelpa, V.; Rougeot, P.; Lehmann, O.; Dembélé, S.; Sturm, P.; Le Fort-Piat, N. Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 2020, 31 (7), 69.
(59) Vinothini, K.; Rajan, M. Chapter 9 - Mechanism for the Nano-Based Drug Delivery System. In Characterization and Biology of Nanomaterials for Drug Delivery, Mohapatra, S. S., Ranjan, S., Dasgupta, N., Mishra, R. K., Thomas, S. Eds.; Elsevier, 2019; pp 219-263.
(60) Kaszuba, M.; Corbett, J.; Watson, F. M.; Jones, A. High-concentration zeta potential measurements using light-scattering techniques. Philos Trans A Math Phys Eng Sci 2010, 368 (1927), 4439-4451.
(61) He, Y.; Tang, Y. P.; Ma, D.; Chung, T.-S. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. Journal of Membrane Science 2017, 541, 262-270.
(62) Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248-254.
(63) de Moreno, M. R.; Smith, J. F.; Smith, R. V. Mechanism Studies of Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical Sciences 1986, 75 (9), 907-911.
(64) Jiang, Z. Y.; Woollard, A. C.; Wolff, S. P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett 1990, 268 (1), 69-71.
(65) Chen, G.; Kou, X.; Huang, S.; Tong, L.; Shen, Y.; Zhu, W.; Zhu, F.; Ouyang, G. Modulating the Biofunctionality of Metal–Organic-Framework-Encapsulated Enzymes through Controllable Embedding Patterns. Angewandte Chemie International Edition 2020, 59 (7), 2867-2874.
(66) Chen, G.; Huang, S.; Kou, X.; Zhu, F.; Ouyang, G. Embedding Functional Biomacromolecules within Peptide-Directed Metal-Organic Framework (MOF) Nanoarchitectures Enables Activity Enhancement. Angewandte Chemie (International ed. in English) 2020, 59 (33), 13947-13954.
(67) Maddigan, N. K.; Tarzia, A.; Huang, D. M.; Sumby, C. J.; Bell, S. G.; Falcaro, P.; Doonan, C. J. Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8. Chemical Science 2018, 9 (18), 4217-4223, 10.1039/C8SC00825F.
(68) Tong, L.; Huang, S.; Shen, Y.; Liu, S.; Ma, X.; Zhu, F.; Chen, G.; Ouyang, G. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nature Communications 2022, 13 (1), 951.
(69) Kumar, A.; Dixit, C. K. 3 - Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Nimesh, S., Chandra, R., Gupta, N. Eds.; Woodhead Publishing, 2017; pp 43-58. |